Effect of La2O3-Enriched Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 on Properties of (K0.44Na0.52Li0.04)(Nb0.84Ta0.10Sb0.06)O3 Ceramics Prepared by Solid State Combustion

  • Chittakorn Kornphom
  • Jaru Jutimoosik
  • Theerachai BongkarnEmail author


In this study, we mixed Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 (with 0.10 wt.% of La2O3 added-abbreviate to BNKLLT) solid solution to (K0.44Na0.52 Li0.04)(Nb0.84Ta0.10Sb0.06)O3 (abbreviate to KNLNTS), forming a (1 − x) KNLNTS–xBNKLLT solid solution (0 ≤ x ≤ 0.030 wt.%) prepared via the solid state combustion technique. We examined the effect of the x content on the phase formation, morphology and electrical behavior of these ceramics. The x-ray diffraction of all samples showed a single perovskite phase, indicating that the BNKLLT solid solution effectively diffused into the KNLNTS lattice during the sintering process to form a solid solution. These ceramics showed coexisting orthorhombic and tetragonal phases. The tetragonality increased with an increase in x. An x concentration around 0.005–0.020 promoted a well-developed morphology and enhanced densification. With an x concentration > 0.020, the microstructure and density of the samples began to deteriorate. The phase transition temperature of the orthorhombic ferroelectric to the tetragonal ferroelectric phase disappeared while the Curie temperature of the (1 − x) KNLNTS–xBNKLLT samples reduced with x content ≥ 0.005. Moreover, the (1 − x) KNLNTS–xBNKLLT exhibited intermediate relaxor-like behaviors; i.e., between the normal and relaxor ferroelectric. The highest dielectric constant at room temperature (2126), the highest maximum dielectric constant (6625) and the maximum piezoeelctric coefficient (≅ 275 pC/N) were attained by the sample with an x content of 0.020 due to a morphotropic phase boundary at this concentration. Adding BNKLLT solid solution into KNLNTS resulted in the degeneration of the ferroelectric behavior in this ceramics system. Adding BNKLLT solid solution into KNLNTS ceramics at the right concentration is a new method for improving the physical behavior, dielectric and piezoelectric performance.


KNN-based BNKLLT lead free piezoelectric ceramics combustion technique ferroelectric behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported financially by Naresuan University. The authors wish to thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities. Thanks are also given to Dr. Kyle V. Lopin for his help in editing the manuscript.

Conflict of Interest

There are no conflicts of interest.


  1. 1.
    L. Egerton and D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).CrossRefGoogle Scholar
  2. 2.
    R.E. Jaeger and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).CrossRefGoogle Scholar
  3. 3.
    B.P. Zhang, J.F. Li, K. Wang, and H. Zhang, J. Am. Ceram. Soc. 89, 1605 (2006).CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Birol, D. Damjanovic, and N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006).CrossRefGoogle Scholar
  6. 6.
    H.L. Du, F.S. Tang, D.J. Liu, D.M. Zhu, W.C. Zhou, and S.B. Qu, Mater. Sci. Eng., B 136, 165 (2007).CrossRefGoogle Scholar
  7. 7.
    Y.F. Chang, Z.P. Yang, X.L. Chao, R. Zhang, and X.R. Li, Mater. Lett. 61, 785 (2007).CrossRefGoogle Scholar
  8. 8.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, and F.Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013).CrossRefGoogle Scholar
  9. 9.
    C.H. Choi, C.W. Ahn, S. Nahma, J.O. Hong, and J.S. Lee, Appl. Phys. Lett. 90, 132905 (2007).CrossRefGoogle Scholar
  10. 10.
    Y.P. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Sutapun, C.C. Huang, D.P. Cann, and N. Vittayakorn, J. Alloy. Comp. 479, 462 (2009).CrossRefGoogle Scholar
  12. 12.
    R.P. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, and M. Itoh, Phys. Stat. Sol. A. 202, R57 (2005).CrossRefGoogle Scholar
  13. 13.
    R.Z. Zuo, X.S. Fang, and C. Ye, Appl. Phys. Lett. 90, 092904 (2007).CrossRefGoogle Scholar
  14. 14.
    H.L. Du, W.C. Zhou1, F. Luo, D.M. Zhu1, S.B. Qu, Y. Li and Z.B. Pei, J. Phys. D: Appl. Phys. 41, 085416 (2008).Google Scholar
  15. 15.
    S. Li, Y. Yue, X. Ning, M. Guo, and M. Zhang, J. Alloy Comp. 586, 248 (2014).CrossRefGoogle Scholar
  16. 16.
    N.M. Hagh, B. Jadidian, and A. Safari, J. Electroceram. 18, 339 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Bhupaijit, C. Kornphom, N. Vittayakorn, and T. Bongkarn, Ceram. Int. 41, S81 (2015).CrossRefGoogle Scholar
  18. 18.
    C. Wattanawikkam, N. Vittayakorn, and T. Bongkarn, Ceram. Int. 39, S399 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Kornphom, A. Laowanidwatana, and T. Bongkarn, Ceram. Int. 39, S421 (2013).CrossRefGoogle Scholar
  20. 20.
    C. Kornphom, N. Vittayakorn, and T. Bongkarn, J. Mater. Sci. 51, 4142 (2016).CrossRefGoogle Scholar
  21. 21.
    S.S. Manoharan and K.C. Patil, J. Am. Ceram. Soc. 75, 1012 (1992).CrossRefGoogle Scholar
  22. 22.
    T. Bongkarn, S. Chootin, S. Pinitsoontorn, and S. Maensiri, J. Alloy. Compd. 682, 14 (2016).CrossRefGoogle Scholar
  23. 23.
    W. Yansen, D. Kim, K.J. Parwanta, C. Liu and B.W. Lee, Curr. Appl. Phys. 15, 120 (2015).Google Scholar
  24. 24.
    V.S. Marques, L.S. Cavalcate, J.C. Sczancoski, E.C. Paris, J.M.C. Teixeira, J.A. Varela, F.S.D. Vicente, M.R. Joya, P.S. Pizani, M.S. Li, M.R.M.C. Santos, and E. Longo, Spectrochim. Acta A. 74, 1050 (2009).CrossRefGoogle Scholar
  25. 25.
    Y. Liu and Y. Pu, J. Alloy. Compd. 693, 118 (2017).CrossRefGoogle Scholar
  26. 26.
    Q. Gou, J. Zhu, J. Wu, F. Li, L. Jiang, and D. Xiao, J. Alloy. Compd. 730, 311 (2018).CrossRefGoogle Scholar
  27. 27.
    K. Uchino, S. Nomura, L.E. Cross, S.J. Jang, and R.E. Newnham, J. Appl. Phys. 51, 1442 (1980).CrossRefGoogle Scholar
  28. 28.
    Y. Hou, C. Wang, J. Zhao, H. Ge, M. Zhu, and H. Yan, J. Mater. Chem. Phys. 134, 51 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics and General Science, Faculty of Science and TechnologyChiang Mai Rajabhat UniversityChiang MaiThailand
  2. 2.Department of Physics, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  3. 3.Research Center for Academic Excellence in Applied Physics, Faculty of ScienceNaresuan UniversityPhitsanulokThailand

Personalised recommendations