Advertisement

Impedance Spectroscopy and Neurocomputing Approaches to Investigate the Enhanced Electrical Blocking Properties of CH3(CH2)n−1SH Thin Monolayers Electrodeposited on a Gold Electrode

  • Safia Hadjimi
  • Adel Belayadi
  • Mokhtar ZabatEmail author
  • Ahmed Mougari
  • Mohamed Wafik Khemici
Article
  • 7 Downloads

Abstract

The electrical blocking properties of defect-free self-assembled monolayers (SAMs) of short CH3(CH2)n−1SH alkyl-thiol molecules electrodeposited on the surface of a mono-crystalline gold electrode were investigated. The results are compared with a second model calculation based on an artificial neural network prediction using molecules with chain lengths (n = 4, 6, 8). This approach estimates the equivalent circuit elements for the interface. The second model calculation is based on adjusting the electrical parameters by using a neural network methodology able to set the equivalent circuit parameters related to the systems under study. The results demonstrate high performance in predicting and optimizing the equivalent circuits related to the system when compared with experimental data analysis of electrochemical impedance spectroscopy.

Keywords

Neural network model thiol SAMs charge transfer capacitance EIS electrochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Belayadi, Phys. B: Phys. Condens. Matter 547, 12 (2018).CrossRefGoogle Scholar
  2. 2.
    A. Belayadi and B. Bourahla, Surf. Sci. 675, 1 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Belayadi, B. Bourahla, and F. Mekideche-Chafa, Surf. Rev. Lett. 25, 1850101 (2018).CrossRefGoogle Scholar
  4. 4.
    E. Tuca and I. Paci, Mol. Simul. 43, 797 (2017).CrossRefGoogle Scholar
  5. 5.
    B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides, Chem. Rev. 105, 1171 (2005).CrossRefGoogle Scholar
  6. 6.
    L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollar, Surf. Sci. 411, 186 (1998).CrossRefGoogle Scholar
  7. 7.
    E.K.U. Gross, J.F. Dobson, M. Petersilka, and R.F. Nalewajski, Density Functional Theory II. Topics in Current Chemistry (Berlin: Springer, 1996).Google Scholar
  8. 8.
    R. Desikan, S. Armel, H.M. Meyer, and T. Thundat, Nanotechnology 18, 4028 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Jaccob, G. Rajaraman, and F. Totti, Theor. Chem. Acc. 131, 1150 (2012).CrossRefGoogle Scholar
  10. 10.
    N. Camillone, C.E.D. Chidsey, G.Y. Liu, and G. Scoles, J. Chem. Phys. 98, 4234 (1993).CrossRefGoogle Scholar
  11. 11.
    C. Vericat, M.E. Vela, G. Benitez, P. Carro, and R.C. Salvarezza, Chem. Soc. Rev. 39, 1805 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Tao and S.L. Bernasek, Chem. Rev. 107, 1408 (2007).CrossRefGoogle Scholar
  13. 13.
    M.J. Uddin, M.K. Hossain, M.I. Hossain, W. Qarony, S. Tayyaba, M.N.H. Mia, M.F. Pervez, and S. Hossen, Results Phys. 7, 2289 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Sun and R.M. Crooks, Langmuir 9, 1951 (1993).CrossRefGoogle Scholar
  15. 15.
    E. Tuca and T. Paci, Mol. Simul. 43, 10 (2017).CrossRefGoogle Scholar
  16. 16.
    P.E. Laibinis and G.M. Whitesides, J. Am. Chem. Soc. 114, 9022 (1992).CrossRefGoogle Scholar
  17. 17.
    D.M. Adams, L. Brus, C.E.D. Chidsey, S. Creager, C. Creutz, C.R. Kagan, P.V. Kamat, M. Lieberman, S. Lindsay, R.A. Marcus, R.M. Metzger, M.E. Michel-Beyerle, J.R. Miller, M.D. Newton, D.R. Rolison, O. Sankey, K.S. Schanze, J. Yardley, and X. Zhu, J. Phys. Chem. B 107, 6668 (2003).CrossRefGoogle Scholar
  18. 18.
    G. Benitez, C. Vericat, S. Tanco, Z.R. Lenicov, M.F. Castez, M.E. Vela, and R.C. Salvarezza, Langmuir 20, 5030 (2004).CrossRefGoogle Scholar
  19. 19.
    C. Vericat, F.R. Lenicov, S. Tanco, G. Andreasen, M.E. Vela, and R.C. Salvarezza, J. Phys. Chem. B 106, 9114 (2002).CrossRefGoogle Scholar
  20. 20.
    J.J. Intemann, Y. Kai, L. Yong-Xi, Y. Hin-Lap, Y.X. Xu, L. Po-Wei, C. Chu-Chen, D. Fei-Zhi, Y. Xi, L. Xiasong, C. Yiwang, and K.Y. Jen-Alex, Adv. Funct. Mater. 24, 1465 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Junwei, O. Takuya, P. Zhenxiao, Z. Xinhua, S. Qing, and J. Mater, Chem. A 2, 20882 (2014).Google Scholar
  22. 22.
    L. Norman, L. Juan, A. Ian, T. Yongan, and Z. Xiangqun, Langmuir 33, 2050 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Gilad and N. Ron, Langmuir 24, 5981 (2008).CrossRefGoogle Scholar
  24. 24.
    D.K. Kasdekar, V. Parashar, and C. Arya, Mater Today Proc 5, 772 (2018).CrossRefGoogle Scholar
  25. 25.
    A. Lazrak, F. Boudehenn, S. Bonnot, F. Fraisse, A. Leconte, P. Papillon, and B. Souyri, Renew Energy 86, 1009 (2016).CrossRefGoogle Scholar
  26. 26.
    P.C. Verpoort, P. MacDonald, and G.J. Conduit, Comput. Mater. Sci. 147, 176 (2018).CrossRefGoogle Scholar
  27. 27.
    M.A.Z. Raja and R. Samar, Neurocomputing 124, 178 (2014).CrossRefGoogle Scholar
  28. 28.
    M.A.Z. Raja, J.A. Khan, N.I. Chaudhary, and E. Shivanian, Appl. Soft Comput. 38, 617 (2015).CrossRefGoogle Scholar
  29. 29.
    V. Alar, I. Žmak, B. Runje, and A. Horvatić, Int J ElectrochemSci 11, 7674 (2016).CrossRefGoogle Scholar
  30. 30.
    J. Youshia, M.E. Ali, and A. Lamprecht, Eur. J. Pharm. Biopharm. 119, 333 (2017).CrossRefGoogle Scholar
  31. 31.
    M.A.Z. Raja, Connect. Sci. 26, 195 (2014).CrossRefGoogle Scholar
  32. 32.
    G.Z. Quan, T. Wang, Y.L. Li, Z.Y. Zhan, and Y.F. Xia, J. Mater. Eng. Perform. 25, 553 (2016).CrossRefGoogle Scholar
  33. 33.
    H. Li, Z. Zhang, and Z. Liu, Catalysts 7, 306 (2017).CrossRefGoogle Scholar
  34. 34.
    V.V. Phansalkar and P.S. Sastry, Neural Netw. 5, 505 (1994).CrossRefGoogle Scholar
  35. 35.
    Y. Liu, J.A. Starzyk, and Z. Zhu, IEEE Trans. Neural Netw. 19, 983 (2008).CrossRefGoogle Scholar
  36. 36.
    B.M. Wilamowski, and H. Yu, IEEE Trans. Neural Netw. 21, 930 (2010).CrossRefGoogle Scholar
  37. 37.
    P. Chandra and Y. Singh, Neurocomputing 61, 429 (2004).CrossRefGoogle Scholar
  38. 38.
    M.A.Z. Raja, U. Farooq, N.I. Chaudhary, and A.M. Wazwaz, Appl. Soft Comput. 3, 561 (2016).CrossRefGoogle Scholar
  39. 39.
    M.A.Z. Raja, R. Samar, T. Haroon, and S.M. Shah, Appl. Math. Mech. 36, 1611 (2015).CrossRefGoogle Scholar
  40. 40.
    M.A.Z. Raja and R. Samar, Appl. Math. Model. (2016).  https://doi.org/10.1016/j.apm.2016.01.034.Google Scholar
  41. 41.
    M.A.Z. Raja, J.A. Khan, and T. Haroon, J Taiwan Inst. Chem. Eng. 48, 26 (2015).CrossRefGoogle Scholar
  42. 42.
    D. Colorado-Garrido, D.M. Ortega-Toledo, J.A. Hernández, J.G. González-Rodríguez, and J. Uruchurtu, J. Solid State Electrochem. 13, 1715 (2009).CrossRefGoogle Scholar
  43. 43.
    M.A.Z. Raja, Inf. Sci. 279, 860 (2014).CrossRefGoogle Scholar
  44. 44.
    M. Nikoo, L. Sadowski, and M. Nikoo, Coatings 7, 160 (2017).CrossRefGoogle Scholar
  45. 45.
    A. Belayadi, B. Bourahla, and F. Mekideche-Chafa, Acta Phys. Pol., A 132, 1314 (2017).  https://doi.org/10.12693/aphyspola.132.1314.CrossRefGoogle Scholar
  46. 46.
    A. Belayadi, L. Ait-gougam, B. Bourahla, and F. Mekideche-Chafa, Turk. J. Phys. 40, 231 (2016).CrossRefGoogle Scholar
  47. 47.
    A. Belayadi, L. Ait-Gougam, and F. Mekideche-Chafa, ACM 10, 2833011 (2015).Google Scholar
  48. 48.
    A. Belayadi and B. Bourahla, Phys. B 554, 114 (2019).CrossRefGoogle Scholar
  49. 49.
    A. Belayadi, A. Mougari, and M. Zabat, J. Solid State Electrochem. 23, 195 (2019).CrossRefGoogle Scholar
  50. 50.
    A. Belayadi, Advances in Pattern Recognition Research (New York: Nova Science Publishers, 2018), pp. 193–223.ISBN 978-1-53614-429-1.Google Scholar
  51. 51.
    A. Belayadi, B. Bourahla, and F. Mekideche-Chafa, Advances in Pattern Recognition Research (New York: Nova Science Publishers, 2018), pp. 235–263.ISBN 978-1-53614-429-1.Google Scholar
  52. 52.
    A.S. Bondarenko and G.A. Ragoisha, Progress in Chemometrics Research (New York: Nova Science Publishers, 2005), pp. 89–102.Google Scholar
  53. 53.
    M. Zabat and M. Morin, 626, p. 514 (2013)Google Scholar
  54. 54.
    A. Mougari, M. Zabat, and S. Boudjadar, Surf. Rev. Lett. (2019).  https://doi.org/10.1142/S0218625X19500677.Google Scholar
  55. 55.
    S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (New York: Plenum Press, 1980).CrossRefGoogle Scholar
  56. 56.
    R.P. Janek, W.R. Fawcett, and A. Ulman, J. Phys. Chem. 101, 8550 (1997).CrossRefGoogle Scholar
  57. 57.
    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).CrossRefGoogle Scholar
  58. 58.
    L.H. Dubois, B.R. Zegarski, and R.G. Nuzzo, J. Chem. Phys. 98, 678 (1993).CrossRefGoogle Scholar
  59. 59.
    C.B. Bain, E.B. Troughton, Y.T. Tao, J. Evall, G.M. Whitesides, and R.G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).CrossRefGoogle Scholar
  60. 60.
    E. Sabatani and I. Rubinstein, J. Phys. Chem. 91, 6663 (1987).CrossRefGoogle Scholar
  61. 61.
    L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992).CrossRefGoogle Scholar
  62. 62.
    M.A. Rampi, O.J.A. Schueller, and G.M. Whitesides, Appl. Phys. Lett. 72, 1781 (1998).CrossRefGoogle Scholar
  63. 63.
    C. Amatore, J.M. Saveant, and D. Tessier, J. Electroanal. Chem. 147, 39 (1983).CrossRefGoogle Scholar
  64. 64.
    P. He, L. Li, J. He, M. Li, G. Lan, T. Zhang, Q. Yin, F. Cui, and Y. Zhang, J. South. Med. Univ. 34, 1443 (2014).Google Scholar
  65. 65.
    R.K. Mendes, R.S. Freire, C.P. Fonseca, S. Neves, L.T. Kubota, and J. Braz, Chem. Soc. 15, 849 (2004).Google Scholar
  66. 66.
    A. Dhotel, Z. Chen, L. Delbreilh, B. Youssef, J.M. Saiter, and L. Tan, Int. J. Mol. Sci. 14, 2303 (2013).CrossRefGoogle Scholar
  67. 67.
    E. Torres, A.T. Blumenau, and P.U. Biedermann, Chem. Phys. Chem 12, 999 (2011).CrossRefGoogle Scholar
  68. 68.
    M.A. Daza-Millone, H. Hamoudi, L. Rodrıguez, A. Rubert, G.A. Benıtez, M.E. Vela, R.C. Salvarezza, J.E. Gayone, E.A. Sanchez, O. Grizzi, C. Dablemont, and V.A. Esaulov, Langmuir 25, 12945 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratory of Coating, Materials and EnvironmentM’Hammed Bougara UniversityBoumerdesAlgeria
  2. 2.Laboratory of Theoretical PhysicsUniversity of Science and Technology H. BoumedienneAlgiersAlgeria

Personalised recommendations