Anatase TiO2 Nanotubes-Aggregated Porous Microspheres for Ti Foil-Based Quasi-Solid State Dye-Sensitized Solar Cells with Improved Photovoltaic Performance

  • Jin Hyok RiEmail author
  • Gwon Il Ryu
  • Song Guk Ko
  • Byol Kim
  • Kyong Su Sonu


Fibrous anatase TiO2 nanotubes-aggregated porous microspheres (AMS) with high specific surface area (160 m2 g−1) were fabricated through an alkali solution-assisted hydrothermal process followed by an acid post-treatment and a calcination by using commercial TiO2 nanopowder (P25) as raw material. The resultant AMS microspheres with an average diameter of ~ 5 μm have three-dimensional network-like porous structures formed by accumulation and winding of fibrous TiO2 nanotubes with diameter < 10 nm. When used as photoanode materials of Ti foil-based quasi-solid state dye-sensitized solar cells, the AMS film-based solar cell gives a conversion efficiency of 7.16% with 34% improvement when compared to the P25 film-based one (5.34%).


Ti foil-based dye-sensitized solar cell anatase TiO2 microsphere hydrothermal process electron transfer electron lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the state project of D.P.R. Korea ‘Development of the Perovskite Solar Cell’ (No. 2016-05).


  1. 1.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).CrossRefGoogle Scholar
  3. 3.
    J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G.E. Tulloch, Progr. Photovolt. Res. Appl. 15, 1 (2007).CrossRefGoogle Scholar
  4. 4.
    S.G. Hashmi, M. Özkan, J. Halme, S.M. Zakeeruddin, J. Paltakari, M. Grätzel, and P.D. Lund, Energy Environ. Sci. 9, 2453 (2016).CrossRefGoogle Scholar
  5. 5.
    K. Fan, R.J. Li, J.N. Chen, W.Y. Shi, and T.Y. Peng, Sci. Adv. Mater. 5, 1596 (2013).CrossRefGoogle Scholar
  6. 6.
    J.L. Xu, S.F. Wu, J.P. Jin, and T.Y. Peng, Nanoscale 8, 18771 (2016).CrossRefGoogle Scholar
  7. 7.
    J.L. Xu, S.F. Wu, J.H. Ri, J.P. Jin, and T.Y. Peng, J. Power Sources 327, 77 (2016).CrossRefGoogle Scholar
  8. 8.
    J. Wang and Z.Q. Lin, J. Phys. Chem. C 113, 4026 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Wei, J. Yao, X. Zhang, W. Zhu, H. Wang, and M. Rhodes, Mater. Lett. 61, 4610 (2007).CrossRefGoogle Scholar
  10. 10.
    H.C. He, C.B. Zhang, T. Liu, Y.H. Cao, N. Wang, and Z.H. Guo, J. Mater. Chem. A 4, 9362 (2016).CrossRefGoogle Scholar
  11. 11.
    H.L. Jia, M.D. Zhang, W. Yan, X.H. Ju, and H.G. Zheng, J. Mater. Chem. A 4, 11782 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Ye, X. Xin, C. Lin, and Z. Lin, Nano Lett. 11, 3214 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Lin, Y.U. Heo, A. Nattestad, Z. Sun, L. Wang, J.H. Kim, and S. Dou, Sci. Rep. 4, 5769 (2014).CrossRefGoogle Scholar
  14. 14.
    A.K. Sinha, S. Jana, S. Pande, S. Sarkar, M. Pradhan, M. Basu, S. Saha, A. Pal, and T. Pal, CrystEngComm 11, 1210 (2009).CrossRefGoogle Scholar
  15. 15.
    N.P. Thuy-Duong, E.J. Kim, S.H. Hahn, W.J. Kim, and E.W. Shin, J. Colloid Interface Sci. 356, 138 (2011).CrossRefGoogle Scholar
  16. 16.
    M.D. Ye, D.J. Zheng, M.Y. Wang, C. Chen, W.M. Liao, C.J. Lin, and Z.Q. Lin, ACS Appl. Mater. Interfaces 6, 2893 (2014).CrossRefGoogle Scholar
  17. 17.
    J.G. Yu, J.J. Fan, and K.L. Lv, Nanoscale 2, 2144 (2010).CrossRefGoogle Scholar
  18. 18.
    B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle Scholar
  19. 19.
    X.F. Yang, C.J. Jin, C.L. Liang, D.H. Chen, M.M. Wu, and J.C. Yu, Chem. Commun. 47, 1184 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Wang, L. Zhao, V.S.Y. Lin, and Z.Q. Lin, J. Mater. Chem. 19, 3682 (2009).CrossRefGoogle Scholar
  21. 21.
    X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes, Nano Lett. 8, 3781 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Wang and Z.Q. Lin, Chem. Mater. 20, 1257 (2008).CrossRefGoogle Scholar
  23. 23.
    M.M. Yahkostupov, M. Zamkov, and F.N. Castellano, Energy Environ. Sci. 4, 998 (2011).CrossRefGoogle Scholar
  24. 24.
    P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).CrossRefGoogle Scholar
  25. 25.
    P. Schmuki, J.M. Macak, M. Zlamal, and J. Krysa, Small 3, 300 (2007).CrossRefGoogle Scholar
  26. 26.
    W.W. Liu, H.G. Wang, X.F. Wang, M. Zhang, and M. Guo, J. Mater. Chem. C 4, 11118 (2016).CrossRefGoogle Scholar
  27. 27.
    K. Fan, J.N. Chen, F. Yang, and T.Y. Peng, J. Mater. Chem. 22, 4681 (2012).CrossRefGoogle Scholar
  28. 28.
    K. Fan, T.Y. Peng, J.N. Chen, X.H. Zhang, and R.J. Li, J. Power Sources 222, 38 (2013).CrossRefGoogle Scholar
  29. 29.
    T.Y. Peng, W.Y. Shi, S.F. Wu, Z.H. Ying, and J.H. Ri, Mater. Chem. Phys. 164, 238 (2015).CrossRefGoogle Scholar
  30. 30.
    J.H. Ri, J.P. Jin, J.L. Xu, T.Y. Peng, and K.I. Ryu, Electrochim. Acta 201, 251 (2016).CrossRefGoogle Scholar
  31. 31.
    F. Sauvage, F. Di Fonzo, A. Li Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, and M. Grätzel, Nano Lett. 10, 2562 (2010).CrossRefGoogle Scholar
  32. 32.
    R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta 47, 4213 (2002).CrossRefGoogle Scholar
  33. 33.
    K. Fan, T.Y. Peng, J.N. Chen, and K. Dai, J. Power Sources 196, 2939 (2011).CrossRefGoogle Scholar
  34. 34.
    A. Zaban, M. Greenshtein, and J. Bisquert, ChemPhysChem 4, 859 (2003).CrossRefGoogle Scholar
  35. 35.
    J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Sero, J. Am. Chem. Soc. 126, 13550 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jin Hyok Ri
    • 1
    Email author
  • Gwon Il Ryu
    • 1
  • Song Guk Ko
    • 1
  • Byol Kim
    • 1
  • Kyong Su Sonu
    • 1
  1. 1.Department of Biophysics, Faculty of Life ScienceKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations