Advertisement

Influence of Phase Inhomogeneity on Electromigration Behavior in Cu/Sn-58Bi/Cu Solder Joint

  • Hongbo QinEmail author
  • Xinghe Luan
  • Wu Yue
Article
  • 9 Downloads

Abstract

Owing to the limitations of experimental characterization, a combination of numerical methods based on image-based microstructure reconstruction, microstructure simulation, and finite element analysis was utilized to investigate the influence of phase inhomogeneity on the electromigration behavior in microscale Cu/Sn-58Bi/Cu solder joints. The current crowding effect induced by phase inhomogeneity was revealed, and the maximum current density was two orders of magnitude greater than the minimum current density in a microstructure under current stressing. The current density carried by Sn-rich phases was much larger than that carried by Bi-rich phases, and the migration and diffusion behavior of Bi atoms in the Sn-rich phase were analyzed. Results showed that the Bi atomic flux caused by a Joule heat-induced temperature gradient was limited in this study.

Keywords

Phase inhomogeneity electromigration eutectic Sn-58Bi solder finite element analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC, Nos. 51505095 and 51565024), Natural Science Foundation of Guangxi (No. 2018GXNSFAA281222), and Science and Technology Project of Guangxi (No. 2018AD19080).

Supplementary material

11664_2019_7117_MOESM1_ESM.pdf (3.1 mb)
Supplementary material 1 (PDF 3175 kb)

References

  1. 1.
    S. Annuar, R. Mahmoodian, M. Hamdi, and K.N. Tu, Sci. Technol. Adv. Mater. 693, 18 (2017).Google Scholar
  2. 2.
    C.E. Ho, C.H. Yang, P.T. Lee, and C.T. Chen, Scr. Mater. 79, 114 (2016).Google Scholar
  3. 3.
    Y. Li, A.B.Y. Lim, K. Luo, Z. Chen, F. Wu, and Y.C. Chan, J. Alloys Compd. 372, 673 (2016).Google Scholar
  4. 4.
    J. Sun, G. Xu, F. Guo, Z. Xia, Y. Lei, Y. Shi, X. Li, and X. Wang, J. Mater. Sci. 3544, 46 (2011).Google Scholar
  5. 5.
    S.W. Chen, C.M. Chen, and W.C. Liu, J. Electron. Mater. 1193, 27 (1998).Google Scholar
  6. 6.
    Z. Zhang, H. Cao, Y. Xiao, Y. Cao, M. Li, and Y. Yu, J. Alloys Compd. 1, 703 (2017).Google Scholar
  7. 7.
    C.M. Chen and S.W. Chen, J. Electron. Mater. 902, 28 (1999).Google Scholar
  8. 8.
    T.C. Chiu and K.L. Lin, Scr. Mater. 1121, 60 (2009).Google Scholar
  9. 9.
    S.B. Liang, C.B. Ke, W.J. Ma, M.B. Zhou, and X.P. Zhang, Microelectron. Reliab. 71, 71 (2017).CrossRefGoogle Scholar
  10. 10.
    R. An, Y. Tian, R. Zhang, and C. Wang, J. Mater. Sci. Mater. Electron. 2674, 26 (2015).Google Scholar
  11. 11.
    W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 982, 37 (2008).Google Scholar
  12. 12.
    L. Shen, P. Septiwerdani, and Z. Chen, Mater. Sci. Eng. A 253, 558 (2012).Google Scholar
  13. 13.
    C.M. Chen, L.T. Chen, and Y.S. Lin, J. Electron. Mater. 168, 36 (2007).Google Scholar
  14. 14.
    X. Gu and Y.C. Chan, J. Appl. Phys. 093537, 105 (2009).Google Scholar
  15. 15.
    E.E. Antonova and D.C. Looman, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (2017), pp. 862–871.Google Scholar
  16. 16.
    B. Liu, Y. Tian, J. Qin, R. An, R. Zhang, and C. Wang, J. Mater. Sci. Mater. Electron. 11583, 27 (2016).Google Scholar
  17. 17.
    W. Yue, H.B. Qin, M.B. Zhou, X. Ma, and X.P. Zhang, Trans. Nonferrous Met. Soc. China. 1619, 24 (2014)Google Scholar
  18. 18.
    K. Kanlayasiri and T. Ariga, Mater. Des. 371, 86 (2015).Google Scholar
  19. 19.
    E.A. Holm and C.C. Battaile, JOM 20, 53 (2001).Google Scholar
  20. 20.
    V.S. Solomatov, R. El-Khozondar, and V. Tikare, Phys. Earth Plant. Inter. 265, 129 (2002).Google Scholar
  21. 21.
    H. Kaya, U. Böyük, E. Çadirli, Y. Ocak, S. Akbulut, K. Keşlioĝlu, and N. Marasli, Met. Mater. Int. 575, 14 (2008).Google Scholar
  22. 22.
    L. Shen, P. Lu, S. Wang, and Z. Chen, J. Alloys Compd. 98, 574 (2013).Google Scholar
  23. 23.
    E.E. Antonova and D.C. Looman, in 24th International Conference on Thermoelectrics (2005), pp. 215–218.Google Scholar
  24. 24.
    M.T. Barako, P. Woosung, A.M. Marconnet, M. Asheghi, and K.E. Goodson, in 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2012), pp. 86–92.Google Scholar
  25. 25.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 55, 38 (2002).CrossRefGoogle Scholar
  26. 26.
    T.Y. Lee, K.N. Tu, S.M. Kuo, and D.R. Frear, J. Appl. Phys. 3189, 89 (2001).CrossRefGoogle Scholar
  27. 27.
    X. Gu and Y.C. Chan, J. Electron. Mater. 1721, 37 (2008).Google Scholar
  28. 28.
    C.M. Chen and C.M. Huang, J. Mater. Res. 1051, 23 (2008).Google Scholar
  29. 29.
    T.C. Chiu, Y.T. Chiu, and K.L. Lin, Mater. Lett. 309, 160 (2015).Google Scholar
  30. 30.
    C. Chen, H.Y. Hsiao, Y.W. Chang, F.Y. Ouyang, and K.N. Tu, Mater. Sci. Eng. R 85, 73 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electronic EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.School of Materials EngineeringLanzhou Institute of TechnologyLanzhouChina

Personalised recommendations