Advertisement

Deposition of β-Polyfluorene by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

  • Spencer Ferguson
  • Cassandra V. Williams
  • Bataung Mohapi
  • Adrienne D. Stiff-RobertsEmail author
Topical Collection: 60th Electronic Materials Conference 2018
  • 2 Downloads
Part of the following topical collections:
  1. 60th Electronic Materials Conference

Abstract

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit thin films of polyfluorene (PFO) with semi-crystalline phase domains (β-PFO), which has been performed, previously, only by solution phase processing. Various target emulsion recipes were studied, with emphasis on the primary solvent choice, emulsion mixing time, secondary solvent concentration, or total water concentration. The emulsified particle size for each recipe was compared using dynamic light scattering. Additionally, elevated growth temperature of the substrate was considered for controlling film formation. The surface quality of films was determined by atomic force microscopy, and β-PFO concentration was monitored using photoluminescence or UV–visible absorbance spectroscopy. Importantly, in contrast to solution-based deposition of β-PFO in thin films, emulsion-based RIR-MAPLE demonstrated the ability to increase β-PFO content without degrading, simultaneously, the surface properties of the films. This initial result helps establish the ability of RIR-MAPLE to control and promote semi-crystalline phases in polymer films.

Keywords

RIR-MAPLE matrix-assisted pulsed laser evaporation PFO polyfluorene emulsions semi-crystalline phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. NSF CMMI-1727572.

References

  1. 1.
    Y. Zhao, Y. Zhou, Y. Yang, J. Xu, Z.D. Chen, and Y. Jiang, Mater. Lett. 219, 201 (2018).CrossRefGoogle Scholar
  2. 2.
    Y.J. Park, Y.S. Kang, and C. Park, Eur. Polym. J. 41, 1002 (2005).CrossRefGoogle Scholar
  3. 3.
    D.M. de Leeuw, M.-J. Spijkman, P.W.M. Blom, M. Li, I. Katsouras, H.J. Wondergem, and K. Asadi, Nat. Mater. 12, 433 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Salimi and A.A. Yousefi, J. Polym. Sci. Part B Polym. Phys. 42, 3487 (2004).CrossRefGoogle Scholar
  5. 5.
    A.J. Cadby, P.A. Lane, H. Mellor, S.J. Martin, M. Grell, C. Giebeler, D.D.C. Bradley, M. Wohlgenannt, C. An, and Z.V. Vardeny, Phys. Rev. B Condens. Matter Mater. Phys. 62, 15604 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Knaapila and A.P. Monkman, Adv. Mater. 25, 1090 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. Chen, X. You, X. Zhang, X. Zhang, B. Liu, W. Lai, and W. Huang, J. Appl. Polym. Sci. 134, 6 (2017).Google Scholar
  8. 8.
    A.L.T. Khan, P. Sreearunothai, L.M. Herz, M.J. Banach, and A. Köhler, Phys. Rev. B Condens. Matter Mater. Phys. 69, 085201 (2004).CrossRefGoogle Scholar
  9. 9.
    P. Prins, F.C. Grozema, B.S. Nehls, T. Farrell, U. Scherf, and L.D.A. Siebbeles, Phys. Rev. B Condens. Matter Mater. Phys. 74, 10 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Hayer, A.L.T. Khan, R.H. Friend, and A. Köhler, Phys. Rev. B Condens. Matter Mater. Phys. 71, 1 (2005).CrossRefGoogle Scholar
  11. 11.
    X. Zhang, Q. Hu, J. Lin, Z. Lei, X. Guo, L. Xie, W. Lai, and W. Huang, Appl. Phys. Lett. 103, 153301 (2013).CrossRefGoogle Scholar
  12. 12.
    C.W. Cone, R.R. Cheng, D.E. Makarov, and D.A. Vanden Bout, J. Phys. Chem. B 115, 12380 (2011).CrossRefGoogle Scholar
  13. 13.
    H.H. Lu, C.Y. Liu, C.H. Chang, and S.A. Chen, Adv. Mater. 19, 2574 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Shinar and R. Shinar, J. Phys. D Appl. Phys. 41, 133001 (2008).CrossRefGoogle Scholar
  15. 15.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, and W.R. Salaneck, Nature 397, 121 (1999).CrossRefGoogle Scholar
  16. 16.
    H. Wan, S. Bai, H. Li, J. Ding, B. Yao, Z. Xie, L. Wang, and J. Zhang, J. Lumin. 131, 1393 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Peet, E. Brocker, Y. Xu, and G.C. Bazan, Adv. Mater. 20, 1882 (2008).CrossRefGoogle Scholar
  18. 18.
    N. Gupta, R. Grover, D.S. Mehta, and K. Saxena, Org. Electron. Phys. Mater. Appl. 34, 276 (2016).Google Scholar
  19. 19.
    Y. Fang, E. Gu, L. Chi, R. Xia, W. Huang, Q. Zhang, G. Hai, and X. Li, Molecules 22, 315 (2017).CrossRefGoogle Scholar
  20. 20.
    B. Liu, T. Li, H. Zhang, T. Ma, J. Ren, B. Liu, B. Liu, J. Lin, M. Yu, L. Xie, and D. Lu, J. Phys. Chem. C 122, 14814 (2018).CrossRefGoogle Scholar
  21. 21.
    W. Ge, N.K. Li, R.D. McCormick, E. Lichtenberg, Y.G. Yingling, and A.D. Stiff-Roberts, ACS Appl. Mater. Interfaces 8, 19494 (2016).CrossRefGoogle Scholar
  22. 22.
    R.D. McCormick, E.D. Cline, A.S. Chadha, W. Zhou, and A.D. Stiff-Roberts, Macromol. Chem. Phys. 214, 2643 (2013).CrossRefGoogle Scholar
  23. 23.
    R.D. McCormick, J. Lenhardt, and A.D. Stiff-Roberts, Polymers (Basel). 4, 341 (2012).CrossRefGoogle Scholar
  24. 24.
    R. Pate, K.R. Lantz, and A.D. Stiff-Roberts, IEEE J. Sel. Top. Quantum Electron. 14, 1022 (2008).CrossRefGoogle Scholar
  25. 25.
    T. Tunno, A.P. Caricato, M.E. Caruso, A. Luches, M. Martino, F. Romano, D. Valerini, and M. Anni, Appl. Surf. Sci. 253, 6461 (2007).CrossRefGoogle Scholar
  26. 26.
    F. Mariano, A.P. Caricato, G. Accorsi, C. Leo, M. Cesaria, S. Carallo, A. Genco, D. Simeone, T. Tunno, M. Martino, G. Gigli, and M. Mazzeo, J. Mater. Chem. C 4, 7667 (2016).CrossRefGoogle Scholar
  27. 27.
    W. Zhao, T. Cao, and J.M. White, Adv. Funct. Mater. 14, 783 (2004).CrossRefGoogle Scholar
  28. 28.
    K.A. Luck, H.N. Arnold, T.A. Shastry, T.J. Marks, and M.C. Hersam, J. Phys. Chem. Lett. 7, 4223 (2016).CrossRefGoogle Scholar
  29. 29.
    S.H. Chen, A.C. Su, and S.A. Chen, J. Phys. Chem. B 109, 10067 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Grell, D.D.C. Bradley, G. Ungar, J. Hill, and K.S. Whitehead, Macromolecules 32, 5810 (1999).CrossRefGoogle Scholar
  31. 31.
    D.W. Bright, F.B. Dias, F. Galbrecht, U. Scherf, and A.P. Monkman, Adv. Funct. Mater. 19, 67 (2009).CrossRefGoogle Scholar
  32. 32.
    L. Huang, X. Huang, G. Sun, C. Gu, D. Lu, and Y. Ma, J. Phys. Chem. C 116, 7993 (2012).CrossRefGoogle Scholar
  33. 33.
    D. Lu, T. Ma, Z. Bai, H. Zhang, J. Ren, T. Li, B. Liu, and X. Li, Polymer (Guildf) 103, 299 (2016).CrossRefGoogle Scholar
  34. 34.
    L. Xu, J. Zhang, J. Peng, and F. Qiu, J. Polym. Sci., Part B Polym. Phys. 53, 633 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  3. 3.University Program in Materials Science and EngineeringDuke UniversityDurhamUSA

Personalised recommendations