Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3311–3316 | Cite as

Regrown Vertical GaN pn Diodes with Low Reverse Leakage Current

  • G. W. PickrellEmail author
  • A. M. Armstrong
  • A. A. Allerman
  • M. H. Crawford
  • K. C. Cross
  • C. E. Glaser
  • V. M. Abate
Article
  • 41 Downloads

Abstract

Vertical c-plane GaN pn diodes, where the p-GaN layer is formed by epitaxial regrowth using metal–organic chemical-vapor deposition, are reported. Current–voltage (IV) performance similar to continuously grown pn diodes is demonstrated, including low reverse leakage current and reverse breakdown voltage in excess of −600 V, despite the lack of field management structures to increase the reverse breakdown voltage. Secondary-ion mass spectrometry analysis of regrown interfaces reveals that the primary source of Si at the regrown interface (“Si spike”) is ex situ contamination during wafer handling prior to loading for regrowth. Continuously grown pn diodes with intentional Si doping at the pn junction do not show degraded IV performance for Si sheet concentrations < 8 × 1011 cm−2. Regrown diodes where the n-type drift layer is (plasma) dry-etched before p-GaN regrowth demonstrate significantly higher reverse leakage current. From these results, we conclude that the presence of Si < 8 × 1011 cm−2 and the epitaxial regrowth process are not responsible for performance degradation. Removal of dry-etch-induced current leakage mechanisms, prior to epitaxial regrowth, should enable a method for selective-area p-type doping control that could lead to realization of high-performance vertical power transistors.

Keywords

GaN pn diodes regrowth metal–organic chemical-vapor deposition (MOCVD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency—Energy (ARPA-E), U.S. Department of Energy under the PNDIODES program directed by Dr. Isik Kizilyalli. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

  1. 1.
    I.C. Kizilyalli, T. Prunty, and O. Aktas, IEEE Electron Device Lett. 36, 1073 (2015).CrossRefGoogle Scholar
  2. 2.
    A.M. Armstrong, A.A. Allerman, A.J. Fischer, M.P. King, M.S. Van Heukelom, M.W. Moseley, R.J. Kaplar, J.J. Wierer, M.H. Crawford, and J.R. Dickerson, Electron. Lett. 52, 1170 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Ohta, K. Hayashi, F. Horikiri, M. Yoshino, T. Nakamura, and T. Mishima, Jpn. J. Appl. Phys. 57, 04FG09 (2018).CrossRefGoogle Scholar
  4. 4.
    S. Chowdhury, M.H. Wong, B.L. Swenson, and U.K. Mishra, IEEE Electron Device Lett. 33, 41 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Otake, S. Egami, H. Ohta, Y. Nanishi, and H. Takasu, Jpn. J. Appl. Phys. 46, L599 (2007).CrossRefGoogle Scholar
  6. 6.
    C. Gupta, S.H. Chan, Y. Enatsu, A. Agarwal, S. Keller, and U.K. Mishra, IEEE Electron Device Lett. 37, 1601 (2016).CrossRefGoogle Scholar
  7. 7.
    H. Nie, Q. Diduck, B. Alvarez, A.P. Edwards, B.M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, and I.C. Kizilyalli, IEEE Electron Device Lett. 35, 939 (2014).CrossRefGoogle Scholar
  8. 8.
    T. Oka, Y. Ueno, T. Ina, and K. Hasegawa, Appl. Phys. Express 7, 021002 (2014).CrossRefGoogle Scholar
  9. 9.
    T.J. Anderson, B.N. Feigelson, F.J. Kub, M.J. Tadjer, K.D. Hobart, M.A. Mastro, J.K. Hite, and C.R. Eddy Jr, Electron. Lett. 50, 197 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. Hu, K. Nomoto, M. Qi, W. Li, M. Zhu, X. Gao, D. Jena, and H.G. Xing, IEEE Electron Device Lett. 38, 1071 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Azize, Z. Bougrioua, and P. Gibart, J. Cryst. Growth 299, 103 (2007).CrossRefGoogle Scholar
  12. 12.
    W. Lee, J.H. Ryou, D. Yoo, J. Limb, R.D. Dupuis, D. Hanser, E. Preble, N.M. Williams, and K. Evans, Appl. Phys. Lett. 90, 093509 (2007).CrossRefGoogle Scholar
  13. 13.
    J.P. Liu, J.H. Ryou, D. Yoo, Y. Zhang, J. Limb, C.A. Horne, S.C. Shen, R.D. Dupuis, A.D. Hanser, E.A. Preble, and K.R. Evans, Appl. Phys. Lett. 92, 133513 (2008).CrossRefGoogle Scholar
  14. 14.
    G. Koblmüller, R.M. Chu, A. Raman, U.K. Mishra, and J.S. Speck, J. Appl. Phys. 107, 043527 (2010).CrossRefGoogle Scholar
  15. 15.
    P.R. Tavernier, T. Margalith, L.A. Coldren, S.P. DenBaars, and D.R. Clarke, Electrochem. Solid State Lett. 5, G61 (2002).CrossRefGoogle Scholar
  16. 16.
    J.H. Ryou, J.P. Liu, Y. Zhang, C.A. Horne, W. Lee, S.C. Shen, and R.D. Dupuis, Phys. Stat. Sol. (c) 5, 1849 (2008).CrossRefGoogle Scholar
  17. 17.
    J.A. Grenko, C.L. Reynolds Jr, D.W. Barlage, M.A.L. Johnson, S.E. Lappi, C.W. Ebert, E.A. Preble, T. Paskova, and K.R. Evans, J. Electron. Mater. 39, 504 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations