Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3336–3344 | Cite as

Preparation of Ag Nanoparticles Coated with Silver Stearate for Low-Temperature Sinter-Bonding

  • Yangwu MaoEmail author
  • Yu Duan
  • Ke Wang
  • Lixia Xi
  • Quanrong Deng
  • Geming Wang
  • Shenggao Wang
Article
  • 23 Downloads

Abstract

Silver nanoparticles (NPs) coated with silver stearate [CH3(CH2)16COOAg] have been prepared using a thermal decomposition method. Near-spherical Ag NPs with average size of 4.4 nm were obtained after thermal decomposition at 523 K. The effects of the organic acid and thermal decomposition temperature on the characteristics of the Ag NPs were investigated. For stearic acid and lauric acid with straight-chain structure, a longer chain of the organic acid contributes to the achievement of Ag NPs of smaller size, while ascorbic acid with cyclic structure results in relatively large-sized (approximately 11.7 nm) Ag NPs. Small-sized Ag NPs with uniform size distribution were obtained after thermal decomposition at temperature of 473 K or 523 K. However, after thermal decomposition at temperature of 573 K, the particle size of the Ag NPs increased and obvious aggregation occurred, which may be caused by the absence of the silver stearate coating. Low-temperature sinter-bonding of bare Cu was realized using Ag NP paste at 623 K under pressure of 5 MPa in air atmosphere. The microstructure of the joint revealed formation of a dense sintered Ag filler layer and its favorable interfacial bonding with the Cu substrates.

Keywords

Ag nanoparticles low-temperature sinter-bonding organic acid thermal decomposition temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51304148).

References

  1. 1.
    H.T. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Yao, X. Long, and L.M. Keer, Appl. Mech. Rev. 69, 347 (2017).CrossRefGoogle Scholar
  3. 3.
    S.H. Prak, D.S. Seo, and J.K. Lee, Colloids Surf. A. Physicochem. Eng. Asp. 313, 197 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Kaptay, J. Janczak-Rusch, and L.P.H. Jeurgens, J. Mater. Eng. Perform. 25, 3275 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Zhang, S. Koga, J.T. Jiu, S. Nagao, Y. Izumi, E. Yokoi, and K. Suganuma, Proc. Electron. Compon. Technol. Conf. ECTC 2015, 1774 (2015).Google Scholar
  6. 6.
    J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, J. Mater. Eng. Perform. 23, 1608 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Zhang, C.T. Chen, J.T. Jiu, S. Nagao, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 29, 8854 (2018).Google Scholar
  9. 9.
    P. Peng, A.M. Hu, A.P. Gerlich, G.S. Zou, L. Liu, and Y.N. Zhou, ACS Appl. Mater. Interfaces 7, 12597 (2015).CrossRefGoogle Scholar
  10. 10.
    A.M. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).CrossRefGoogle Scholar
  11. 11.
    D. Wakuda, K.S. Kim, and K. Suganuma, IEEE Trans. Compon. Packag. Technol. 33, 437 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Alarifi, A.M. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).CrossRefGoogle Scholar
  13. 13.
    J.F. Yan, G.S. Zou, A.P. Wu, J.L. Ren, A.M. Hu, and Y.N. Zhou, J. Electron. Mater. 41, 1924 (2012).CrossRefGoogle Scholar
  14. 14.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  15. 15.
    F.W. Mu, Z.Y. Zhao, G.S. Zou, H.L. Bai, A.P. Wu, L. Liu, D.Y. Zhang, and Y.N. Zhou, Mater. Trans. 54, 872 (2013).CrossRefGoogle Scholar
  16. 16.
    W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, J.M. Song, Y.T. Chiu, and P.F. Yang, Mater. Sci. Eng. A 613, 372 (2014).CrossRefGoogle Scholar
  17. 17.
    J.F. Yan, D.Y. Zhang, G.S. Zou, L. Liu, H.L. Bai, A.P. Wu, and Y.N. Zhou, J. Nanomater. 2016, 5284048 (2016).CrossRefGoogle Scholar
  18. 18.
    Z.J. Wu, J. Cai, J.Q. Wang, Z.T. Geng, and Q. Wang, J. Electron. Mater. 47, 988 (2018).CrossRefGoogle Scholar
  19. 19.
    Z.Y. Liu, J. Cai, Q. Wang, L. Liu, and G.S. Zou, Appl. Surf. Sci. 445, 16 (2018).CrossRefGoogle Scholar
  20. 20.
    H.Q. Zhang, G.S. Zou, L. Liu, H. Tong, Y. Li, H.L. Bai, and A.P. Wu, J. Mater. Sci. 52, 3375 (2017).CrossRefGoogle Scholar
  21. 21.
    B. Chen, X.L. Jiao, and D.R. Chen, Cryst. Growth Des. 10, 3378 (2010).CrossRefGoogle Scholar
  22. 22.
    L. Li, Y.M. Da, S. Ying, W.Q. Zheng, X.Y. Zhang, and X.H. Yu, Polym. Bull. 74, 505 (2017).CrossRefGoogle Scholar
  23. 23.
    W. Guo, H.Q. Zhang, X.Y. Zhang, L. Liu, P. Peng, G.S. Zou, and Y.N. Zhou, J. Alloys Compd. 690, 86 (2017).CrossRefGoogle Scholar
  24. 24.
    G.N. Xu, X.L. Qiao, X.L. Qiu, and J.G. Chen, Colloids Surf. A. Physicochem. Eng. Asp. 320, 222 (2008).CrossRefGoogle Scholar
  25. 25.
    G.R. Nasretdinova, R.R. Fazleeva, R.K. Mukhitova, I.R. Nizameev, M.K. Kadirov, A.Y. Ziganshina, and V.V. Yanilkin, Electrochem. Commun. 50, 69 (2015).CrossRefGoogle Scholar
  26. 26.
    X.P. Zeng, Q. Wang, H. Wang, and Y.J. Yang, J. Mater. Sci. 52, 8391 (2017).CrossRefGoogle Scholar
  27. 27.
    D.H. Liang, Z. Lu, H. Yang, J.T. Gao, and R. Chen, ACS Appl. Mater. Interfaces 8, 3958 (2016).CrossRefGoogle Scholar
  28. 28.
    F.J. Liu, Y. Yuan, L. Li, S.M. Shang, X.H. Yu, Q. Zhang, S.X. Jiang, and Y.G. Wu, Compos. Part B. Eng. 69, 232 (2014).CrossRefGoogle Scholar
  29. 29.
    Z. Lu, K.F. Rong, J. Li, H. Yang, and R. Chen, J. Mater. Sci. Mater. Med. 24, 1465 (2013).CrossRefGoogle Scholar
  30. 30.
    H. Nagasawa, M. Maruyama, T. Komatsu, S. Isoda, and T. Kobayashi, Phys. Status Solidi A 191, 67 (2002).CrossRefGoogle Scholar
  31. 31.
    A. Rado and D. Lukowiec, CrystEngComm 20, 7130 (2018).CrossRefGoogle Scholar
  32. 32.
    C.T. Chen, S. Nagao, J.T. Jiu, H. Zhang, T. Sugahara, and K. Suganuma, Appl. Phys. Lett. 108, 263105 (2016).CrossRefGoogle Scholar
  33. 33.
    G.H. Albuquerque, K. Squire, A.X. Wang, and G.S. Herman, Cryst. Growth Des. 18, 119 (2018).CrossRefGoogle Scholar
  34. 34.
    Y.W. Mao, S. Yu, Y.Z. Zhang, B.B. Guo, Z.B. Ma, and Q.R. Deng, Fusion Eng. Des. 100, 152 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Zhang, X. Wang, X. Peng, and L. Zhang, Appl. Phys. A 75, 485 (2002).CrossRefGoogle Scholar
  36. 36.
    S. Navaladian, B. Viswanathan, T.K. Varadarajan, and R.P. Viswanath, Nanoscale Res. Lett. 4, 471 (2009).CrossRefGoogle Scholar
  37. 37.
    S. Bakirdere, M.T. Yilmaz, F. Tornuk, S. Keyf, A. Yilmaz, O. Sagdic, and B. Kocabas, Food Res. Int. 76, 439 (2015).CrossRefGoogle Scholar
  38. 38.
    S. George, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Chichester: Wiley, 2001).Google Scholar
  39. 39.
    A.L. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  40. 40.
    K. Aoki, J. Chen, N.J. Yang, and H. Nagasawa, Langmuir 19, 9904 (2003).CrossRefGoogle Scholar
  41. 41.
    N.J. Yang, K. Aoki, and H. Nagasawa, J. Phys. Chem. B 108, 15027 (2004).CrossRefGoogle Scholar
  42. 42.
    P.W. Atkins, Physical Chemistry, 6th ed. (Oxford: Oxford University Press, 1998).Google Scholar
  43. 43.
    M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A 93, 467 (2008).CrossRefGoogle Scholar
  44. 44.
    H. Granbohm, J. Larismaa, S. Ali, L.S. Johansson, and S.P. Hannula, Materials 11, 80 (2018).CrossRefGoogle Scholar
  45. 45.
    J.F. Yan, G.S. Zou, A.P. Wu, J.L. Ren, J.C. Yan, A.M. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).CrossRefGoogle Scholar
  46. 46.
    H. Nishikawa, X.D. Liu, X.F. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
  47. 47.
    M.H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, Mater. Trans. 57, 1209 (2016).CrossRefGoogle Scholar
  48. 48.
    M.A. Asoro, D. Kovar, and P.J. Ferreira, ACS Nano 7, 7844 (2013).CrossRefGoogle Scholar
  49. 49.
    L.F. Ding, R.L. Davidchack, and J.Z. Pan, Comput. Mater. Sci. 45, 247 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Plasma Chemistry and Advanced MaterialsWuhan Institute of TechnologyWuhanChina
  2. 2.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations