We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

The Influence of Various Dopants and Sintering Techniques on the Properties of the Yttria-Ceria-Zirconia System As an Electrolyte for Solid Oxide Fuel Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Zirconia-based ceramic oxides Zr0.90Y0.06Ce0.02X0.02O2−δ (X = Ca, Fe, La, Sr, and Mg) were prepared by conventional and microwave processing. The precursors of Zr0.90Y0.06Ce0.02X0.02O2−δ (X = Ca, Fe, La, Sr, and Mg) were prepared by a mixed oxide method and were calcined at 600°C in an electric furnace. The powders were consolidated in pellet form and sintered in a conventional electric furnace at 1400°C for 6 h and compared using microwave energy at 1400°C for 20 min. The structure and microstructure of sintered products obtained by both methods were studied by x-ray diffraction and scanning electron microscopy. Their density and microhardness were also compared. The electrical conductivities of these samples were studied using alternating current impedance spectroscopy. The analysis of the products obtained by microwave aand conventional methods shows that the microwave sintered samples have uniform grain growth, higher density, higher microhardness and higher electrical conductivity than the corresponding conventionally sintered products. The microwave sintered sample of composition Zr0.90Y0.06Ce0.02Ca0.02O2−δ was found to have the highest density and microhardness, as well as the highest electrical conductivity among all of the microwave and conventionally sintered products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Choudhury, H. Chandra, and A. Arora, Renew. Sustain. Energy Rev. 20, 430 (2013).

    Article  Google Scholar 

  2. E.S.M. Seo, W.K. Yoshito, V. Ussui, D.R.R. Lazar, S.R.H.D.M. Castanho, and J.O.A. Paschoal, Mater. Res. 7, 215 (2004).

    Article  Google Scholar 

  3. S.C. Singhal, Solid State Ion. 135, 305 (2000).

    Article  Google Scholar 

  4. G. Xu, Y.W. Zhang, C.S. Liao, and C.H. Yan, Solid State Ion. 166, 391 (2004).

    Article  Google Scholar 

  5. S. Ramesh, C.K. Ng, C.Y. Tan, W.H. Wong, C.Y. Ching, A. Muchtar, and P. Devaraj, Ceram. Int. 42, 14469 (2016).

    Article  Google Scholar 

  6. A. Ghazanfari, W. Li, M.C. Leu, J.L. Watts, and G.E. Hilmas, Ceram. Int. 43, 6082 (2017).

    Article  Google Scholar 

  7. J.R. Kelly and I. Denry, Dent. Mater. 24, 289 (2008).

    Article  Google Scholar 

  8. Z.G. Lv, P. Yao, R.S. Guo, and F.Y. Dai, Mater. Sci. Eng. A 458, 355 (2007).

    Article  Google Scholar 

  9. M.D. Ridder, R.G. Welzenis, H.H. Brongersma, and U. Kreissig, Solid State Ion. 158, 67 (2003).

    Article  Google Scholar 

  10. M. Biswas and K.C. Sadanala, J. Powder Metall. Min. 2, 4 (2013).

    Google Scholar 

  11. H.P. Dasari, J.S. Ahn, K. Ahn, S.Y. Park, J. Hong, H. Kim, K.J. Yoon, J.W. Son, H.W. Lee, and J.H. Lee, Solid State Ion. 263, 103 (2014).

    Article  Google Scholar 

  12. O. Yamamoto, Electrochem. Acta 45, 2423 (2000).

    Article  Google Scholar 

  13. S. Hong, J. Bae, B. Koo, and Y.B. Kim, Electrochem. Commun. 47, 1 (2014).

    Article  Google Scholar 

  14. Z. Jiang, L. Zhang, L. Cai, and C. Xia, Electrochem. Acta 54, 3059 (2009).

    Article  Google Scholar 

  15. P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, and F.B. Prinz, Nano Lett. 8, 2289 (2008).

    Article  Google Scholar 

  16. J.H. Shim, C.C. Chao, H. Huang, and F.B. Prinz, Chem. Mater. 19, 3850 (2007).

    Article  Google Scholar 

  17. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F.B. Prinz, Electrochem. Soc. 154, B20 (2007).

    Article  Google Scholar 

  18. T.I. Politova and J.T.S. Irvine, Solid State Ion. 168, 153 (2004).

    Article  Google Scholar 

  19. G.K. Meenashisundaram, T.H.D. Ong, G. Parande, V. Manakari, X. Shulin, and M. Gupta, J. Rare Earth 35, 723 (2017).

    Article  Google Scholar 

  20. D.J. Kim, J. Am. Ceram. Soc. 72, 1415 (1989).

    Article  Google Scholar 

  21. R. Gerhardt, A.S. Nowick, M.E. Mochel, and I. Dumler, J. Am. Soc. 69, 647–651 (1986).

    Google Scholar 

  22. K. Tanwar, N. Jaiswal, D. Kumar, and O. Parkash, J. Alloys Compd. 684, 683 (2016).

    Article  Google Scholar 

  23. T.S. Zhang, J. Ma, Y.J. Leng, S.H. Chan, P. Hing, and J.A. Kilner, Solid State Ion. 168, 187 (2004).

    Article  Google Scholar 

  24. H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, and H. Haneda, Electrochem. 68, 455 (2000).

    Google Scholar 

  25. M.T. Vinas, F. Zhang, J. Vleugels, and M. Anglada, J. Eur. Ceram. Soc. 38, 2621 (2018).

    Article  Google Scholar 

  26. D.E. Clark and W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996).

    Article  Google Scholar 

  27. R.R. Mishra and A.K. Sharma, Compos. Part A Appl. Sci. Manuf. 81, 78 (2016).

    Article  Google Scholar 

  28. A. Goldstein, N. Travitzky, A. Singurindy, and M. Kravchik, J. Eur. Ceram. Soc. 19, 2067 (1999).

    Article  Google Scholar 

  29. S. Bodhak, S. Bose, and A. Bandyopadhyay, J. Am. Ceram. Soc. 94, 32 (2011).

    Article  Google Scholar 

  30. G. Sethi, A. Upadhyaya, and D. Agrawal, Sci. Sinter. 35, 49 (2003).

    Article  Google Scholar 

  31. K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, Bull. Mater. Sci. 31, 655 (2008).

    Article  Google Scholar 

  32. A.P. Singh, N. Kaur, K.L. Singh, and A. Kumar, J. Am. Ceram. Soc. 90, 789 (2007).

    Article  Google Scholar 

  33. P. Sharma, C. Sharma, K.L. Singh, and A.P. Singh, JOM 70, 1398 (2018).

    Article  Google Scholar 

  34. K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, in American Ceramic Society Conference Proceedings, Florida, USA (2008).

  35. K.L. Singh, P. Sharma, A.P. Singh, A. Kumar, and S.S. Sekhon, JOM 69, 2448 (2017).

    Article  Google Scholar 

  36. H.S. Thamyscira, P.F.G. João, J.A. Francisco, D.P.F. Loureiroc, F.C. Fonsecad, and D.A. Macedoa, Ceram. Int. 44, 2745 (2018).

    Article  Google Scholar 

  37. J. Yang, B. Ji, J. Si, Q. Zhang, Q. Yin, J. Xie, and C. Tian, Int. J. Hydrog. Energy 41, 15979 (2016).

    Article  Google Scholar 

  38. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 1978).

    Google Scholar 

  39. A.A. Jais, S.M. Ali, M. Anwar, M.R. Somalu, A. Muchtar, W.N. Isahak, and N.P. Brandon, Ceram. Int. 43, 8119 (2017).

    Article  Google Scholar 

  40. R.V. Manglaraja, S. Ananthakumar, A. Scachtsiek, M.L. Carlos, P. Camurri, and R.E. Alvia, Mater. Sci. Eng. A 527, 3645 (2010).

    Article  Google Scholar 

  41. T. Kumatso, T. Noguchi, and Y. Benino, J. Non-Cryst. Solids 222, 206 (1997).

    Article  Google Scholar 

  42. S. Khan and K. Singh, Ceram. Int. 45, 695 (2019).

    Article  Google Scholar 

  43. A. Zevalkink, A. Hunter, M. Swanson, C. Johnson, J. Kapat, N. Orlovskaya, and M.R.S. Symp, Proc. Ser. 972, 163 (2007).

    Google Scholar 

  44. R. Grosso and E. Muccillo, J. Power Sources 233, 6 (2013).

    Article  Google Scholar 

  45. S. Yarmolenko, J. Sankar, N. Bernier, M. Klimov, J. Kapat, and N. Orlovskaya, J. Fuel Cell Sci. Technol. 6, 021007 (2009).

    Article  Google Scholar 

  46. J.T. Irvine and P. Connor, Solid Oxide Fuels Cells: Facts and Figures (London: Springer, 2013).

    Book  Google Scholar 

  47. H. Bouhamed, Mater. Sci. Eng. B 225, 182 (2017).

    Article  Google Scholar 

  48. E.C. Subbarao, Zirconia—an overview.Advances in Ceramics, Science and Technology of Zirconia, Vol. 3, ed. A.H. Heuer and L.W. Hobbs (Amsterdam: Elsevier, 1981), pp. 1–24.

    Google Scholar 

  49. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).

    Article  Google Scholar 

  50. Y. Kan, S. Li, P. Wang, G.J. Zhang, O.V.D. Biest, and J. Vleugels, Solid State Ion. 179, 1531 (2008).

    Article  Google Scholar 

  51. O. Bohnke, V. Gunes, K.V. Kravchyk, A.G. Belous, O.Z. Yanchevskii, and O.I. V’Yunov, Solid State Ion. 262, 517 (2014).

    Article  Google Scholar 

  52. M.N. Rahman, J.R. Gross, and R.E. Dutton, Acta Mater. 54, 1615 (2006).

    Article  Google Scholar 

  53. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  54. A.J. Flegler, T.E. Burye, Q. Yang, and J.D. Nicholas, Ceram. Int. 40, 16323 (2014).

    Article  Google Scholar 

  55. H. Inaba, T. Nakajima, and H. Tagawal, Solid State Ion. 106, 263 (1998).

    Article  Google Scholar 

  56. N. Orlovskaya, S. Lukich, G. Subhash, T. Graule, and J. Kuebler, J. Power Sources 195, 2774 (2010).

    Article  Google Scholar 

  57. S.L. Hwang, I.W. Chen, and J. Am, Ceram. Soc. 73, 3269 (1990).

    Article  Google Scholar 

  58. J.A. Allemann, B. Michel, H.-B. Märkia, L.J. Gaucklera, and E.M. Moserb, J. Eur. Ceram. Soc. 15, 951 (1995).

    Article  Google Scholar 

  59. S.C. Sharma, N.M. Gokhale, R. Dayal, and R. Lal, Bull. Mater. Sci. 25, 15 (2002).

    Article  Google Scholar 

  60. S.I. Ahmad, P.K. Rao, and I.A. Syed, J. Taibah Univ. Sci. 10, 381 (2016).

    Article  Google Scholar 

  61. X. Miao, D. Sun, P.W. Hoo, J. Liu, Y. Hu, and Y. Chen, Ceram. Int. 30, 1041 (2004).

    Article  Google Scholar 

  62. H. Zhou, J. Li, D. Yi, and L. Xiao, Phys. Procedia 22, 14 (2011).

    Article  Google Scholar 

  63. T. Hiratoko, A. Yoneda, and M. Osako, Ceram. Int. 40, 12471 (2014).

    Article  Google Scholar 

  64. F. Yuan, J. Wang, H. Miao, C. Goo, and W.G. Wang, J. Alloys Compd. 549, 200 (2013).

    Article  Google Scholar 

  65. S.P. Miller, B.I. Dunlap, and A.S. Fleisher, Solid State Ion. 253, 130 (2013).

    Article  Google Scholar 

  66. R.H.L. Garcia, V. Ussui, N.B. de Lima, E.N.S. Muccillo, and D.R.R. Lazar, J. Alloys Compd. 486, 747 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan L. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Singh, K.L., Singh, A.P. et al. The Influence of Various Dopants and Sintering Techniques on the Properties of the Yttria-Ceria-Zirconia System As an Electrolyte for Solid Oxide Fuel Cells. J. Electron. Mater. 48, 3527–3536 (2019). https://doi.org/10.1007/s11664-019-07094-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07094-w

Keywords

Navigation