Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3239–3247 | Cite as

Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1−xHfxTi0.9)O3 Ceramics

  • Fengyu Guo
  • Wei CaiEmail author
  • Rongli Gao
  • Chunlin Fu
  • Gang Chen
  • Xiaoling Deng
  • Zhenhua Wang
  • Qianwei Zhang
Article
  • 16 Downloads

Abstract

(Ba0.85Ca0.15)(Zr0.1−xHfxTi0.9)O3 (BCZHT) ceramics were fabricated by a conventional solid-state reaction method. The effects of Hf4+ on microstructure and electric properties of BCZHT ceramics have been systematically investigated. The x-ray diffraction (XRD) results indicate that the introduction of Hf4+ in BCZHT ceramics induces phase transition from an orthorhombic phase to the coexistence of tetragonal and orthorhombic phases, and the lattice constant decreases with the increasing of Hf4+ content caused by substitution of Hf4+ for Zr4+ at B sites. As Hf4+ content increases, the densification of BCZHT ceramics is enhanced and the grain size increases. The introduction of Hf4+ at B sites results in the fall of the Curie temperature and the increase of dielectric constant in BCZHT ceramics. The temperature dependences of dielectric properties of BCZHT (x = 0, 0.05 and 0.1) ceramics show obvious diffuse phase transition characteristics, and the diffuseness of phase transition is enhanced with increasing of Hf4+ content. But there is no frequency dispersion phenomenon in BCZHT (x = 0, 0.05 and 0.1) ceramics. The substitution of Hf4+ for Zr4+ at B sites of BCZHT ceramics makes its remnant polarization increase, which results from the interaction of increased grain size and tolerance factor. When temperature is above its Curie temperature, the polarization–electric field curves of BCZHT (x = 0, 0.05 and 0.1) ceramics still show nonlinear characteristics, which further proves that there is diffuse phase transition and relaxor-like behavior. Moreover, the piezoelectric coefficient of BCZHT ceramics increases as Hf4+ content increases.

Keywords

Ferroelectric dielectric properties diffuse phase transition (Ba0.85Ca0.15)(Zr0.1−xHfxTi0.9)O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Excellent Talent Project in University of Chongqing (Grant no. 2017-35), the Science and Technology Innovation Project of Social Undertakings and People’s Livelihood Guarantee of Chongqing (Grant no. cstc2017shmsA90015), the Program for Innovation Teams in University of Chongqing (Grant no. CXTDX201601032), the Leading Talents of Scientific and Technological Innovation in Chongqing, the Chongqing Research Program of Basic Research and Frontier Technology (grant nos. CSTC2018jcyjAX0416, CSTC2016jcyjA0175, CSTC2016jcyjA0349).

References

  1. 1.
    A.J. Bell and O. Deubzer, MRS Bull. 43, 581 (2018).CrossRefGoogle Scholar
  2. 2.
    T. Zheng, J.G. Wu, D.Q. Xiao, and J.G. Zhu, Prog. Mater. Sci. 98, 552 (2018).CrossRefGoogle Scholar
  3. 3.
    B.W. Dai, X.P. Hu, R.Q. Yin, W.F. Bai, F. Wen, J.X. Deng, L. Zheng, J. Du, P. Zheng, and H.B. Qin, J. Mater. Sci. Mater. Electron. 28, 7928 (2017).CrossRefGoogle Scholar
  4. 4.
    T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, and X.L. Tan, Acta Mater. 128, 337 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Yin, C.L. Zhao, Y.X. Zhang, and J.G. Wu, Acta Mater. 147, 70 (2018).CrossRefGoogle Scholar
  6. 6.
    K. Wang, F.Z. Yao, J. Koruza, L.Q. Cheng, F.H. Schader, M.H. Zhang, J. Rödel, J.F. Li, and K.G. Webber, J. Am. Ceram. Soc. 100, 2116 (2017).CrossRefGoogle Scholar
  7. 7.
    P. Li, X.Q. Chen, F.F. Wang, B. Shen, J.W. Zhai, S.J. Zhang, Z.Y. Zhou, and A.C.S. Appl, Mater. Interfaces 10, 28772 (2018).CrossRefGoogle Scholar
  8. 8.
    W.F. Liu and X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
  9. 9.
    G. Singh, V. Sathe, and V.S. Tiwari, J. Electron. Mater. 46, 4976 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Nahas, A. Akbarzadeh, S. Prokhorenko, S. Prosandeev, R. Walter, I. Kornev, J. Íñiguez, and L. Bellaiche, Nat. Commun. 8, 15944 (2017).CrossRefGoogle Scholar
  11. 11.
    I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, and A.L. Kholkin, Acta Mater. 155, 331 (2018).CrossRefGoogle Scholar
  12. 12.
    Y.S. Tian, S.Y. Li, S.L. Sun, Y.S. Gong, S.J. Sun, and Q.S. Jing, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6572-3.Google Scholar
  13. 13.
    S.B. Li, C.B. Wang, X. Ji, Q. Shen, and L.M. Zhang, J. Eur. Ceram. Soc. 37, 2067 (2017).CrossRefGoogle Scholar
  14. 14.
    Y.C. Liu, Y.F. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S.T. Zhang, R.X. Wang, and W.W. Cao, ACS Appl. Mater. Interfaces 9, 29863 (2017).CrossRefGoogle Scholar
  15. 15.
    Z.H. Zhao, X.L. Li, Y.J. Dai, H.M. Ji, and D. Su, Mater. Lett. 165, 131 (2016).CrossRefGoogle Scholar
  16. 16.
    M.X. Zhou, R.H. Liang, Z.Y. Zhou, C.H. Xu, X. Nie, and X.L. Dong, Mater. Res. Bull. 106, 213 (2018).CrossRefGoogle Scholar
  17. 17.
    W.F. Bai, L.J. Wang, P. Zheng, F. Wen, L.L. Li, J.W. Zhai, and Z.G. Ji, Ceram. Int. 44, 16040 (2018).CrossRefGoogle Scholar
  18. 18.
    X.F. Wang, J. Liu, P.F. Liang, and Z.P. Yang, J. Electron. Mater. 47, 6121 (2018).CrossRefGoogle Scholar
  19. 19.
    Ramovatar, I. Coondoo, S. Satapathy, N. Kumar, and N. Panwar, J. Electron. Mater. 47, 5870 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Mittal, R. Laishram, and K.C. Singh, Mater. Res. Bull. 105, 253 (2018).CrossRefGoogle Scholar
  21. 21.
    T. Rojac and D. Damjanovic, Jpn. J. Appl. Phys. 56, 10PA01 (2017).CrossRefGoogle Scholar
  22. 22.
    D. Damjanovic and G.A. Rossetti, MRS Bull. 43, 588 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, and S.J. Pennycook, Energy Environ. Sci. 10, 528 (2017).CrossRefGoogle Scholar
  24. 24.
    R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, and J. Koruza, J. Eur. Ceram. Soc. 36, 3391 (2016).CrossRefGoogle Scholar
  25. 25.
    Y.R. Cui, X.Y. Liu, M.H. Jiang, Y.B. Hu, Q.S. Su, and H. Wang, J. Mater. Sci. Mater. Electron. 23, 1342 (2012).CrossRefGoogle Scholar
  26. 26.
    Y.M. Lai, Y.M. Zeng, X.L. Tang, H.W. Zhang, J. Han, Z.H. Huang, and H. Su, Ceram. Int. 42, 12694 (2016).CrossRefGoogle Scholar
  27. 27.
    W. Cai, C.L. Fu, J.C. Gao, Z.B. Lin, and X.L. Deng, Ceram. Int. 38, 3367 (2012).CrossRefGoogle Scholar
  28. 28.
    A.D. Loreto, R. Machado, A. Frattini, and M.G. Stachiotti, J. Mater. Sci. Mater. Electron. 28, 588 (2017).CrossRefGoogle Scholar
  29. 29.
    X.F. Wang, P.F. Liang, L.L. Wei, X.L. Chao, and Z.P. Yang, J. Mater. Sci. Mater. Electron. 26, 5217 (2015).CrossRefGoogle Scholar
  30. 30.
    J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M. Siu Li, and E. Longo, Solid State Sci. 12, 1160 (2010).CrossRefGoogle Scholar
  31. 31.
    T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, and E. Longo, Mater. Chem. Phys. 121, 147 (2010).CrossRefGoogle Scholar
  32. 32.
    T. Wang, J.C. Hu, H.B. Yang, L. Jin, X.Y. Wei, C.C. Li, F. Yan, and Y. Lin, J. Appl. Phys. 121, 084103 (2017).CrossRefGoogle Scholar
  33. 33.
    Y.F. Liu, Z.Y. Ling, and Z.P. Zhuo, J. Alloys Compd. 727, 925 (2017).CrossRefGoogle Scholar
  34. 34.
    P. Sharma, P. Kumar, R.S. Kundu, J.K. Juneja, N. Ahlawat, and R. Punia, Ceram. Int. 41, 13425 (2015).CrossRefGoogle Scholar
  35. 35.
    H. Kaddoussi, Y. Gagou, A. Lahmar, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, and M. El Marssi, Solid State Commun. 201, 64 (2015).CrossRefGoogle Scholar
  36. 36.
    X.Z. Fu, W. Cai, G. Chen, and R.L. Gao, J. Mater. Sci. Mater. Electron. 28, 8177 (2017).CrossRefGoogle Scholar
  37. 37.
    J.W. Zhai, X. Yao, J. Shen, L.Y. Zhang, and H. Chen, J. Phys. D Appl. Phys. 7, 748 (2004).CrossRefGoogle Scholar
  38. 38.
    N. Wang, B.P. Zhang, J. Ma, L. Zhao, and J. Pei, Ceram. Int. 43, 641 (2017).CrossRefGoogle Scholar
  39. 39.
    I.B. Misirlioglu, M.B. Okatan, and S.P. Alpay, J. Appl. Phys. 108, 034105 (2010).CrossRefGoogle Scholar
  40. 40.
    U. Balachandran and N.G. Eror, Solid State Commun. 44, 815 (1982).CrossRefGoogle Scholar
  41. 41.
    Z. Yu, C. Ang, R.Y. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingPeople’s Republic of China
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Material and DeviceChongqingPeople’s Republic of China

Personalised recommendations