Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3324–3329 | Cite as

Asphalt-Decomposed Carbon-Coated SnO2 as an Anode for Lithium Ion Batteries

  • Guodong Liang
  • Xiaogang SunEmail author
  • Jiamei Lai
  • Chengcheng Wei
  • Yapan Huang
  • Hao Hu
  • Jingyi Zou
  • Yuhao Xu
Article
  • 8 Downloads

Abstract

In this paper, a SnO2@C composite anode was prepared by coating SnO2 with asphalt by hydrothermal process and carbonization. The core–shell structure of SnO2 nanoparticles was characterized by scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction and thermal gravimetric analysis. The electrochemical performance tests showed the SnO2@C anode exhibited excellent cycle performance and high specific capacity. The core–shell structure can accommodate the huge volume expansion of SnO2 nanoparticles during charge/discharge. The conductivity of the electrode was also obviously enhanced. The first-charge capacity and coulombic efficiency reached 1798 mAh/g and 65%, respectively. After 80 cycles, the capacity still remained at 446 mAh/g at a current density of 100 mA/g.

Keywords

SnO2 asphalt coating lithium ion battery anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was funded by the Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    N.L. Panwar, S.C. Kaushik, and S. Kothari, Renew. Sust. Energ. Rev. 15, 1513 (2011).CrossRefGoogle Scholar
  2. 2.
    I. Dincer, Renew. Sust. Energ. Rev. 4, 157 (2000).CrossRefGoogle Scholar
  3. 3.
    J.M. Tarascon and M.B. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  4. 4.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).CrossRefGoogle Scholar
  5. 5.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer, Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
  6. 6.
    J.S. Chen and X.W. Lou, Small 9, 1877 (2013).CrossRefGoogle Scholar
  7. 7.
    D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, and J.M. Tarascon, J. Mater. Chem. 17, 3759 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Wang and A.L. Rogach, Chem. Mater. 26, 123 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y. Liang, Y. Cui, and H. Dai, J. Am. Chem. Soc. 132, 13978 (2010).CrossRefGoogle Scholar
  10. 10.
    Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, and J. Maier, Angew. Chem. Int. Ed. 47, 1645 (2008).CrossRefGoogle Scholar
  11. 11.
    G. Derrien, J. Hassoun, S. Panero, and B. Scrosati, Adv. Mater. 19, 2336 (2007).CrossRefGoogle Scholar
  12. 12.
    L. Miao, J. Wu, J. Jiang, and P. Liang, J. Phys. Chem. C 117, 23 (2013).CrossRefGoogle Scholar
  13. 13.
    J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, and Y.H. Yang, J. Phys. Chem. C 113, 20504 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding, and X.W.D. Lou, Angew. Chem. 126, 13017 (2015).CrossRefGoogle Scholar
  15. 15.
    H.Q. Wang, J.J. Ji, X. Zhao, J.J. Zhang, Y. Li, Q.Y. Li, and Y.G. Huang, Mater. Rev. 27, 48 (2013).Google Scholar
  16. 16.
    T. Xia, W. Zhang, Z. Wang, Y. Zhang, X. Song, J. Murowchick, V. Battaglia, G. Liu, and X.B. Chen, Nano Energy 6, 109 (2014).CrossRefGoogle Scholar
  17. 17.
    X. Yang, R.Y. Zhang, X.F. Bie, C.Z. Wang, M.L. Li, N. Chen, Y.G. Wei, G. Chen, and F. Du, Chem. Asian J. 10, 2460 (2015).CrossRefGoogle Scholar
  18. 18.
    H. Lu, B. Liu, G. Chu, J.Y. Zheng, F. Luo, X.P. Qiu, H. Liu, F. Liu, S. Feng, W. Chen, H. Li, and L.Q. Chen, Energy Storage Sci. Technol. 5, 109 (2016).Google Scholar
  19. 19.
    Z.Y. Liu, L.K. Liu, X. Jin, H. Tang, and R.G. Sun, Acta Mater. Compos. Sin. 36, 141 (2018).Google Scholar
  20. 20.
    X.W. Lou, J.S. Chen, P. Chen, and L.A. Archer, Chem. Mater. 21, 2868 (2009).CrossRefGoogle Scholar
  21. 21.
    X. Sun, J. Liu, and Y. Li, Chem. Mater. 18, 3486 (2006).CrossRefGoogle Scholar
  22. 22.
    X.W. Lou, D. Deng, J.Y. Lee, and L.A. Archer, Chem. Mater. 20, 6562 (2008).CrossRefGoogle Scholar
  23. 23.
    X.W. Lou, C.M. Li, and L.A. Archer, Adv. Mater. 21, 2536 (2009).CrossRefGoogle Scholar
  24. 24.
    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, and H.K. Liu, Angew. Chem. 46, 750 (2010).CrossRefGoogle Scholar
  25. 25.
    R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, and M.M. Titirici, Chem. Mater. 20, 1227 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Noerochim, J.Z. Wang, S.L. Chou, H.J. Li, and H.K. Liu, Electrochim. Acta 56, 314 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak, Adv. Mater. 10, 725 (2010).CrossRefGoogle Scholar
  28. 28.
    M.M. Rahmana, J.Z. Wang, M.F. Hassan, S. Chou, D. Wexler, and H.K. Liu, J. Power Sources 195, 4297 (2010).CrossRefGoogle Scholar
  29. 29.
    Z. Zhou, Y. Xu, W. Liu, and L. Niu, J. Alloys Compd. 493, 636 (2010).CrossRefGoogle Scholar
  30. 30.
    A.Y. Shenouda and K.R. Murali, J. Power Sources 176, 332 (2008).CrossRefGoogle Scholar
  31. 31.
    Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, J. Power Sources 196, 10240 (2011).CrossRefGoogle Scholar
  32. 32.
    K. Wijeratne, J. Akilavasan, M. Thelakkat, and J. Bandara, Electrochimica Acta 72, 192 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Guodong Liang
    • 1
  • Xiaogang Sun
    • 1
    • 2
    Email author
  • Jiamei Lai
    • 1
  • Chengcheng Wei
    • 1
  • Yapan Huang
    • 1
  • Hao Hu
    • 1
  • Jingyi Zou
    • 1
  • Yuhao Xu
    • 1
  1. 1.School of Mechantronics EngineeringNanchang UniversityNanchangChina
  2. 2.NanoCarbon Co. LtdNanchangChina

Personalised recommendations