Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3169–3182 | Cite as

Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range

  • A. Baltakesmez
  • A. Taşer
  • Z. Kudaş
  • B. GüzeldirEmail author
  • D. Ekinci
  • M. Sağlam
Article
  • 24 Downloads

Abstract

Mercaptoundecanoic acid capped-Ag nanoparticles (MUA-AgNPs) assembled on graphene oxide (GO), namely MUA-AgNPs-GO nanocomposite, was used for enhancing current–voltage (IV) activity and stability of n-lnP based heterojunction devices. The structural, morphological and optical properties of the MUA-AgNPs-GO nanocomposite were examined by Raman spectroscopy, UV–Vis spectroscopy, transmission electron microscopy and scanning electron microscopy measurements. Besides, the Ag/MUA-AgNPs-GO/n-InP/Au-Ge heterojunction was fabricated, and working performance of the heterojunction was investigated in the temperature range of 80–320 K by steps of 20 K. The heterojunction created by the MUA-AgNPs-GO nanocomposite showed improved working performance such as better IV characteristics, great stability and better rectifying ratio than that of our reference junction. The ideality factor and barrier height values of the junction formed with MUA-AgNPs-GO layer were found to be 1.07 eV and 0.630 eV, respectively. The experimental value of the Richardson constant was determined to be 3.82 A/cm2 K2 in the 80–160 K temperature range and to be 6.55 A/cm2 K2 in the 160–320 K temperature range. The results showed that the MUA-AgNPs-GO nanocomposite is a favorable candidate to provide modification of barrier height and to improve characteristic parameters for applications of the heterojunction devices.

Keywords

Graphene oxide nanoparticle heterojunction current–voltage measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    L.B. Freund and S. Suresh, Thin Film Materials (New York: Cambridge University Press, 2003).Google Scholar
  2. 2.
    A. Baltakesmez, A. Yenisoy, S. Tüzemen, and E. Gür, Mater. Sci. Semicond. Process. 74, 249 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Akın, E. Erol, and S. Sönmezoğlu, Electrochim. Acta 225, 243 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Kösemen, Z.A. Kösemen, B. Canimkubey, M. Erkovan, F. Başarır, S.E. San, O. örnek, and A.V. Tunç, Sol. Energy 132, 511 (2016).CrossRefGoogle Scholar
  5. 5.
    G. Turgut and E. Sönmez, Superlattices Microstruct. 69, 175 (2014).CrossRefGoogle Scholar
  6. 6.
    F.N. Dultsev, L.L. Vasilieva, S.M. Maroshina, and L.D. Pokrovsky, Thin Solid Films 510, 255 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Hirashima, I. Michihisa, and I. Yoshida, J. Non-Cryst. Solids 86, 327 (1986).CrossRefGoogle Scholar
  8. 8.
    G.V. Baryshevsky, A.P. Ulyanenkov, and I.D. Feranchuk, Parametric X-ray Radiation in Crystals (New York: Springer Tracts in Modern Physics, 2005).CrossRefGoogle Scholar
  9. 9.
    A.A.A. Darwish, S.A. Issa, T.A. Hamdalla, and M.M. El-Nahass, Opt. Quantum Electron. 49, 1 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Ali Yıldırım, S.T. Yıldırım, and A. Ates, J. Alloys Compd. 701, 37 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Reyhani, A. Gholizadeh, V. Vahedi, and M.R. Khanlary, Opt. Mater. 75, 236 (2018).CrossRefGoogle Scholar
  12. 12.
    C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices (Berlin, Heidelberg, New York: Springer-Verlag, 2002).CrossRefGoogle Scholar
  13. 13.
    E.Ö. Zayim and N.D. Baydogan, Energy Mater. Sol. Cells 90, 402 (2006).CrossRefGoogle Scholar
  14. 14.
    A.M. Manzini, M.A. Alurralde, G. Gimenez, and V. Luca, J. Nucl. Mater. 482, 175 (2016).CrossRefGoogle Scholar
  15. 15.
    N. Baydogan, Mater. Sci. Eng. 107, 70 (2004).CrossRefGoogle Scholar
  16. 16.
    K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga, Radiation Effects in Solids (Italy: Proceedings of the NATO Advanced Study Institute on Radiation Effects in Solids Erice, 2004)Google Scholar
  17. 17.
    S. Sarangi, J. Phys. D: Appl. Phys. 49, 355 (2016).CrossRefGoogle Scholar
  18. 18.
    X. Wang and Y. Zhang, Mater. Lett. 188, 257 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Oliveira, D. Ugarte, D. Zanchet, and A. Zarbin, J. Colloid Interf. Sci. 292, 429 (2005).CrossRefGoogle Scholar
  20. 20.
    A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, and D. Ekinci, Chem. Sel. 2, 6663 (2017).Google Scholar
  21. 21.
    K.N. Kudin, B. Özbaş, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Chem. Mater. 21, 3514 (2009).CrossRefGoogle Scholar
  23. 23.
    L. Tao, Y. Lou, Y. Zhao, M. Hao, Y. Yang, Y. Xiao, Y.H. Tsang, and J. Li, J. Mater. Sci. 53, 573 (2018).CrossRefGoogle Scholar
  24. 24.
    Ö. Metin, H. Can, K. Şendil, and M.S. Gültekin, J. Colloid Interface Sci. 498, 378 (2017).CrossRefGoogle Scholar
  25. 25.
    S.K. Cusshing, ACS Nano 8, 1002 (2014).CrossRefGoogle Scholar
  26. 26.
    D. Hernandez-Sanchez, G. Villabona-Leal, I. Saucedo-Orozco, V. Bracamonte, E. Perez, C. Bittencourt, and M. Quintan, Phys. Chem. Chem. Phys. 20, 1685 (2018).CrossRefGoogle Scholar
  27. 27.
    E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Oxford: University Press, 1988).Google Scholar
  28. 28.
    A.D. Bartolomeo, Phys. Rep. 606, 1 (2016).CrossRefGoogle Scholar
  29. 29.
    A. Levstek and S. Amon, J. Appl. Phys. 94, 7604 (2003).CrossRefGoogle Scholar
  30. 30.
    A. Behnam, E. Pop, G. Bosman, and A. Ural, J. Appl. Phys. 118, 114307 (2015).CrossRefGoogle Scholar
  31. 31.
    H. Umezawa, S. Shikata, and T. Funaki, Jpn. J. Appl. Phys. 53, 570 (2014).Google Scholar
  32. 32.
    T. Çakıcı, B. Güzeldir, and M. Sağlam, J. Alloys Compd. 646, 954 (2015).CrossRefGoogle Scholar
  33. 33.
    S.M. Sze, Physics of Semiconductor Device (New York: Wiley, 1981).Google Scholar
  34. 34.
    A. Tataroğlu, C. Ahmedova, G. Barim, A.G. Al-Sehemi, A. Karabulut, A.A. Al-Ghamdi, W.A. Farooq, and F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 15, 12561 (2018).CrossRefGoogle Scholar
  35. 35.
    B. Guzeldir, M. Sağlam, and A. Ateş, J. Alloys Compd. 506, 388 (2010).CrossRefGoogle Scholar
  36. 36.
    I. Taşçıoğlu, U. Aydemir, ş. Altındal, B. Kınacı, and S. Özçelik, J. Appl. Phys. 109, 054502 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Kocyigit, I. Orak, Z. Çaldıran, and A. Türüt, J. Mater. Sci. Mater. Electron. 28, 17177 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • A. Baltakesmez
    • 1
  • A. Taşer
    • 2
  • Z. Kudaş
    • 3
  • B. Güzeldir
    • 2
    Email author
  • D. Ekinci
    • 3
  • M. Sağlam
    • 2
  1. 1.Department of Electricity and Energy, Technical Scientific Vocational SchoolArdahan UniversityArdahanTurkey
  2. 2.Department of Physics, Faculty of SciencesAtatürk UniversityErzurumTurkey
  3. 3.Department of Chemistry, Faculty of SciencesAtaturk UniversityErzurumTurkey

Personalised recommendations