Journal of Electronic Materials

, Volume 48, Issue 5, pp 3183–3193 | Cite as

An Ultrasonication Based Facile Protocol to Synthesize Mesoporous Nanocrystalline TiO2 as Photo Anode for Application in Quantum Dot/Perovskite Sensitized Solar Cell

  • M. B. Rajendra Prasad
  • Johny T. Abraham
  • Ch. RajeshEmail author
  • Habib M. Pathan


Quality of the photo-electrode films employed in the fabrication of Quantum Dot Sensitized Solar Cells (QDSSC) or Perovskite solar cells depends on the quality of dispersion used in preparing these films. The dispersion should be stable and free from aggregations in order to make transparent electrodes. Herein, we discuss one of the most facile and simple methods for fabrication of mesoporous transparent titania as a photo-electrode by using different organic additives through a step wise ultrasonication. The changes that took place in the dispersion were analyzed through each step of the protocol with the help of zeta potential along with discussing the role of each additive used in the protocol. The effective size of the particle in dispersion was determined. The prepared paste was further characterized using Thermo Gravimetric Analysis to understand thermal stability of its constituents. Structural analysis of photo-electrode film was done using Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy and x-ray Diffractometry. Optical absorption studies were employed to determine the band gap of the material. Photocurrent density versus photovoltage curves were also studied in order to evaluate the photovoltaic performance of the fabricated photo-electrode after assembling a QDSSC using the prepared photo-electrode.


Titania dispersion aggregation photoelectrode solar cell mesoporous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



MBRP and JTA would like to acknowledge the National Defence Academy, Khadakwasla Pune for their encouragement and support to carry out research. HMP is thankful to Fast Track Proposal Scheme, Science and Engineering Research Board, Department of Science and Technology, New Delhi for financial support. CR would like to acknowledge the Department of Science and Technology for providing the funding under the scheme of Young Scientist, File No: SB/FTP/ETA-0213/2014.


  1. 1.
    M. Grätzel, Nature 414, 338 (2001).CrossRefGoogle Scholar
  2. 2.
    L.A. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, and G. Gigli, J. Phys. Chem. C 114, 4228 (2010).CrossRefGoogle Scholar
  3. 3.
    Y. Qiu, W. Chen, and S. Yang, Angew. Chem. 122, 3757 (2010).CrossRefGoogle Scholar
  4. 4.
    S.K. Dhungel and J.G. Park, Renew. Energy 35, 2776 (2010).CrossRefGoogle Scholar
  5. 5.
    M.S. Akhtar, M.A. Khan, M.S. Jeon, and O.B. Yang, Electrochim. Acta 53, 7869 (2008).CrossRefGoogle Scholar
  6. 6.
    G. Shang, J. Wu, S. Tang, M. Huang, Z. Lan, Y. Li, J. Zhao, and X. Zhang, J. Mater. Chem. 22, 25335 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovolt. Res. Appl. 15, 603 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, and M. Grätzel, Thin Solid Films 516, 4613 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Yamamoto, Y. Aoyama, S. Shimizu, J. Kano, F. Saito, and S. Ito, Int. J. Photoenergy 2011, 22 (2011).CrossRefGoogle Scholar
  10. 10.
    P. Gemeiner and M. Mikula, Acta Chimica Slovaca. 6, 29 (2013).CrossRefGoogle Scholar
  11. 11.
    P. Gemeiner and M. Mikula, Mater. Sci. Semicond. Process. 30, 605 (2015).CrossRefGoogle Scholar
  12. 12.
    E.C. Muniz, M.S. Goes, J.J. Silva, J.A. Varela, E. Joanni, R. Parra, and P.R. Bueno, Ceram. Int. 37, 1017 (2011).CrossRefGoogle Scholar
  13. 13.
    S.H. Othman, S.A. Rashid, T.I. Ghazi, and N. Abdullah, J Nanomater. 2012, 2 (2012).CrossRefGoogle Scholar
  14. 14.
    C.H. Chang and Y.L. Lee, Appl. Phys. Lett. 91, 053503 (2007).CrossRefGoogle Scholar
  15. 15.
    M.M. Ba-Abbad, A.A. Kadhum, A.B. Mohamad, M.S. Takriff, and K. Sopian, Int. J. Electrochem. Sci. 7, 4871 (2012).Google Scholar
  16. 16.
    N. Mandzy, E. Grulke, and T. Druffel, Powder Technol. 2005, 121 (2005).CrossRefGoogle Scholar
  17. 17.
    E.M. Hotze, T. Phenrat, and G.V. Lowry, J. Environ. Qual. 39, 1909 (2010).CrossRefGoogle Scholar
  18. 18.
    B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. De Miguel, and L. Bergström, Sci. Technol. Adv. Mater. 14, 023001 (2013).CrossRefGoogle Scholar
  19. 19.
    Y.K. Leong and B.C. Ong, Powder Technol. 134, 249 (2003).CrossRefGoogle Scholar
  20. 20.
    J.H. Bang and K.S. Suslick, Adv. Mater. 22, 1039 (2010).CrossRefGoogle Scholar
  21. 21.
    U. Srinivasan, D. Liepmann, and R.T. Howe, J. Microelectromech. Sys. 10, 17 (2001).CrossRefGoogle Scholar
  22. 22.
    K.S. Suslick, The Year Book of Science and Future, Encyclopedia Britannica (Chicago, 1994), p. 138.Google Scholar
  23. 23.
    K.S. Suslick, Sci. Am. 260, 80 (1989).CrossRefGoogle Scholar
  24. 24.
    B.C. Kocaoglu, Production and development of flexible dye sensitized solar cells. Ph.D. Thesis, Middle East Technical University (2014).Google Scholar
  25. 25.
    C.L. Yu, Titanium dioxide thick film printing paste for dye sensitized solar cell. Ph.D. Thesis, Case Western Reserve University (2011).Google Scholar
  26. 26.
    S. Xu, C.H. Zhou, Y. Yang, H. Hu, B. Sebo, B.L. Chen, Q.D. Tai, and X. Zhao, Energy Fuels 25, 1168 (2011).CrossRefGoogle Scholar
  27. 27.
    D.S. Tsoukleris, I.M. Arabatzis, E. Chatzivasiloglou, A.I. Kontos, V. Belessi, M.C. Bernard, and P. Falaras, Sol. Energy 79, 422 (2005).CrossRefGoogle Scholar
  28. 28.
    M.F. Zedníková, L. Vobecká, and J. Vejrazka, Can. J. Chem. Eng. 2010, 473 (2010).Google Scholar
  29. 29.
    R.S. Petryshyn, Z.M. Yaremko, and M.N. Soltys, J. Colloids 72, 517 (2010).CrossRefGoogle Scholar
  30. 30.
    N.H. Tkachenko, Z.M. Yaremko, C. Bellmann, and M.M. Soltys, J. Colloids Int. Sci. 299, 686 (2006).CrossRefGoogle Scholar
  31. 31.
    S. Ahmed, A.D. Pasquier, D.P. Birnie III, and T. Asefa, ACS Appl. Mater. Int. 3, 3002 (2011).CrossRefGoogle Scholar
  32. 32.
    C. Sentein, B. Guizard, S. Giraud, C. Yé, and F. Ténégal, J. Phys. Conf. Ser. 170, 012013 (2009).CrossRefGoogle Scholar
  33. 33.
    K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas, Nanoscale Res. Lett. 6, 27 (2011).Google Scholar
  34. 34.
    Y. Li, Z. Qin, H. Guo, H. Yang, G. Zhang, S. Ji, and T. Zeng, PLoS ONE 9, e114638 (2014).CrossRefGoogle Scholar
  35. 35.
    A. Sedghi and H.N. Miankushki, Int. J. Electrochem. Sci. 7, 12078 (2012).Google Scholar
  36. 36.
    R.A. Kumar, V.G.V. Dutt, and Ch. Rajesh, Eur. Phys. J Plus 133, 60 (2018).CrossRefGoogle Scholar
  37. 37.
    R. Sendi and S. Mahmud, J. Phys. Sci. 24, 1 (2013).Google Scholar
  38. 38.
    M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, and L. Suominen, A National Measurement Good Practice Guide (New Delhi: 2nd Issue National Physical Laboratory, 2005), pp. 1–77.Google Scholar
  39. 39.
    R.A. Kumar, A. Venkateswara Rao, and Ch. Rajesh, Eur. Phys. J. Plus 133, 179 (2018).CrossRefGoogle Scholar
  40. 40.
    J. Song, X. Zhang, C. Zhou, Y. Lan, Q. Pang, and L. Zhou, J. Electron. Mater. 44, 22 (2015).CrossRefGoogle Scholar
  41. 41.
    M.B. Rajendra Prasad, S. Deena, Ch. Rajesh, V.K. Pandit, and H.M. Pathan, J. Renew. Sustain. Energy 5, 031615 (2013).CrossRefGoogle Scholar
  42. 42.
    L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, and L. Sun, J. Am. Chem. Soc. 133, 8458 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Advanced Physics Laboratory, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.National Defence AcademyPuneIndia
  3. 3.Department of PhysicsGVP College of Engineering (A)VisakhapatnamIndia

Personalised recommendations