Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3137–3144 | Cite as

Improved Structural and Electrical Properties of ZnO-Based Thin Film Transistors by Using Pulsed KrF Excimer Laser Irradiation

  • Min-Suk Oh
  • R. Nirmala
  • R. NavamathavanEmail author
Article
  • 10 Downloads

Abstract

We report on the characteristics of ZnO-based thin film transistors (TFT) fabricated by radio frequency magnetron sputtering. The surface of the ZnO channel layers were treated by pulsed KrF excimer laser irradiation (ELI) to improve the structural and electrical properties. The ZnO TFT device is of bottom gate type, which consists of SiO2 as a gate insulator and indium tin oxide as a gate deposited onto Corning glass substrates. The root-mean-square surface roughness and structural property of ZnO channel layer was significantly improved by the ELI treatment. The laser-treated ZnO TFT exhibited a saturation mobility of 19.27 cm2/V s, an on/off ratio greater than 105, the off current of less than 10−7 A, and a threshold voltage of 1.1 V. These results revealed the significant improvement of device characteristics and demonstrated that the pulsed KrF ELI treatment is an effective way to improve the ZnO TFT device performance.

Keywords

ZnO thin film transistor laser treatment electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S.M. Sze, Physics of Semiconductor Devices, 2nd Ed. Ch. 6 (John Wiley & Sons, New York, NY, 1981).Google Scholar
  2. 2.
    C.R. Kagan and P. Andry, Thin-Film Transistors, Marcel Dekker, New York, Ch. 1 (2003).Google Scholar
  3. 3.
    J.F. Wager, Science 300, 1245 (2003).CrossRefGoogle Scholar
  4. 4.
    T.I. Suzuki, A. Ohtomo, A. Tsukazaki, F. Sato, J. Nishii, H. Ohno, and M. Kawasaki, Adv. Mater. 16, 1887 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Li, D. Hana, J. Dong, W. Yu, Y. Liang, Z. Luo, S. Zhang, X. Zhang, and Y. Wang, Appl. Surf. Sci. 439, 632 (2018).CrossRefGoogle Scholar
  6. 6.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater. 17, 590 (2005).CrossRefGoogle Scholar
  7. 7.
    S.J. Chang, M. Cheralathan, M. Bawedin, B. Iniguez, B. Bayraktaroglu, J.H. Lee, J.H. Lee, and S. Cristoloveanu, Solid-State Electron. 90, 134 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Varma, C. Periasamy, and D. Boolchandani, Superlattices Microstruct. 114, 284 (2018).CrossRefGoogle Scholar
  9. 9.
    R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).CrossRefGoogle Scholar
  10. 10.
    D.K. Hwang, M.S. Oh, J.H. Lim, and S.J. Park, J. Phys. D 40, R387 (2007).CrossRefGoogle Scholar
  11. 11.
    Z. Xiong, X.-C. Liu, S.-Y. Zhuo, J.-H. Yang, E.-W. Shi, and W.-S. Yan, Appl. Phys. Lett. 99, 052513 (2011).CrossRefGoogle Scholar
  12. 12.
    S.H. Liu, H.S. Hsu, G. Venkataiah, X. Qi, C.R. Lin, J.F. Lee, K.S. Liang, and J.C.A. Huang, Appl. Phys. Lett. 96, 262504 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Janotti and C.G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Faiz and N. Tabet, AIP Conf. Proceed. 929, 147 (2007).CrossRefGoogle Scholar
  15. 15.
    J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, and S.I. Kim, Appl. Phys. Lett. 90, 262106 (2007).CrossRefGoogle Scholar
  16. 16.
    K. Remashan, D.K. Hwang, S.D. Park, J.W. Bae, G.Y. Yeom, S.J. Park, and J.H. Jang, Electrochem. Solid-State Lett. 11, H55 (2008).CrossRefGoogle Scholar
  17. 17.
    H.S. Bae, J.H. Kim, and S.I. Im, Electrochem. Solid-State Lett. 7, G279 (2004).CrossRefGoogle Scholar
  18. 18.
    F.H. Alshammari, P.K. Nayak, Z. Wang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 8, 22751 (2016).CrossRefGoogle Scholar
  19. 19.
    W. Ye, J. Deng, X. Wang, and L. Cui, Appl. Surf. Sci. 390, 831 (2016).CrossRefGoogle Scholar
  20. 20.
    K.W. Jang, D. Wee, Y.H. Kim, J. Kim, T. Ahn, J.W. Ka, and M.H.Y, Langmuir 29, 7143 (2013).Google Scholar
  21. 21.
    M.A. Dominguez, F. Flores, J. Martinez, and A.O. Diaz, Thin Solid Films 615, 243 (2016).CrossRefGoogle Scholar
  22. 22.
    C. Yang, E.J. Yoo, S.W. Lee, T.K. An, and S.H. Kim, Chin. J. Phys. 54, 471 (2016).CrossRefGoogle Scholar
  23. 23.
    T. Sameshima and S. Usui, Appl. Phys. Lett. 59, 2724 (1991).CrossRefGoogle Scholar
  24. 24.
    J.J. Kim, J.Y. Bak, J.H. Lee, H.S. Kim, N.W. Jang, Y. Yun, and W.J. Lee, Thin Solid Films 518, 3022 (2010).CrossRefGoogle Scholar
  25. 25.
    I.H. Song, S.H. Kang, W.J. Nam, and M.K. Han, IEEE Elect. Device Lett. 24, 580 (2003).CrossRefGoogle Scholar
  26. 26.
    C.H. Kim, I.H. Song, W.J. Nam, and M.K. Han, IEEE Elect. Device Lett. 23, 315 (2003).Google Scholar
  27. 27.
    C.N. Chen and J.J. Huang, J. Appl. Res. Technol. 13, 170 (2015).CrossRefGoogle Scholar
  28. 28.
    J.J. Kim, J.Y. Bak, J.H. Lee, H.S. Kim, N.W. Jang, Y. Yun, and W.J. Lee, Thin Solid Films 518, 3022 (2010).CrossRefGoogle Scholar
  29. 29.
    M.N. Fujii, Y. Ishikawa, R. Ishihara, J.V.D. Cingel, M.R.T. Mofrad, J.P.S. Bermundo, E. Kawashima, S. Tomai, K. Yano, and Y. Uraoka, AIP Adv. 6, 065216 (2016).CrossRefGoogle Scholar
  30. 30.
    S. Vyas, Chin. J. Phys. 56, 117 (2018).CrossRefGoogle Scholar
  31. 31.
    M. Nakata, K. Takechi, T. Eguchi, E. Tokumitsu, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys. 48, 081608 (2009).CrossRefGoogle Scholar
  32. 32.
    R. Navamathavan, E.J. Yang, J.H. Lim, D.K. Hwang, J.Y. Oh, J.H. Yang, J.H. Jang, and S.J. Park, J. Electrochem. Soc. 153, G385 (2006).CrossRefGoogle Scholar
  33. 33.
    R. Navamathavan, C.K. Choi, E.J. Yang, J.H. Lim, D.K. Hwang, and S.J. Park, Solid-State Electron. 52, 813 (2008).CrossRefGoogle Scholar
  34. 34.
    H. Faber, J. Hirschmann, M. Klaumunzer, B. Braunschweig, W. Peukert, and M. Halik, ACS Appl. Mater. Interfaces 4, 1693 (2012).CrossRefGoogle Scholar
  35. 35.
    H. Faber, M. Burkhardt, A. Jedaa, D. Kablein, H. Klauk, and M. Halik, Adv. Mater. 21, 3099 (2009).CrossRefGoogle Scholar
  36. 36.
    R. Collongues, D. Gourier, A.K. Harari, A.M. Lejus, J. Thery, and D. Vivien, Annu. Rev. Mater. Sci. 20, 51 (1990).CrossRefGoogle Scholar
  37. 37.
    S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).CrossRefGoogle Scholar
  38. 38.
    B.J. Norris, J. Anderson, J.F. Wager, and D.A. Keszler, J. Appl. Phys. D Appl. Phys. 36, L105 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Division of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Organic Materials and Fiber EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of BiotechnologyHindustan College of Arts and SciencePadur, ChennaiIndia
  4. 4.Division of Physics, School of Advanced SciencesVellore Institute of Technology, ChennaiChennaiIndia

Personalised recommendations