Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3059–3068 | Cite as

Specific Peculiarities of the Electronic Structure of SrPb3Br8 As Evidenced from First-Principles DFT Band-Structure Calculations

  • O. Y. Khyzhun
  • V. L. Bekenev
  • N. M. DenysyukEmail author
  • L. I. Isaenko
  • A. P. Yelisseyev
  • A. A. Goloshumova
  • A. Y. Tarasova
Article
  • 17 Downloads

Abstract

We report data of band-structure calculations based on density functional theory (DFT) of ternary strontium lead bromide, SrPb3Br8, a prospective scintillation and optoelectronic material. Similar band-structure calculations are made also for the isostructural lead dibromide, PbBr2. The present DFT calculations reveal the similarity of the main electronic contributors to the valence-band region for both bromides. In particular, Br 4p states are the principal contributors to the upper portion of the valence band, while its bottom is dominated by Pb 6s states in SrPb3Br8 and PbBr2. However, the main contributors at the bottom of the conduction band are the unoccupied Br 4p and Pb 5p states in the case of SrPb3Br8 and PbBr2, respectively. Some substantial contributions of the electronic states associated with strontium atoms are detected in the central and upper portions of the valence band, while the unoccupied Sr d states at the bottom of the conduction band of SrPb3Br8. The calculations indicate that the SrPb3Br8 and PbBr2 bromides are indirect-gap semiconductors with band gaps of 3.05 eV and 3.14 eV, respectively. The theoretical data of band-structure calculations of SrPb3Br8 and PbBr2 are confirmed experimentally by measurements of the transmission spectra of these bromides.

Keywords

Semiconductors x-ray photoelectron spectroscopy optoelectronic materials ab initio calculations electronic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the state assignment Project No. 0330-2016-0008.

References

  1. 1.
    M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, S. Schunemann, and L.I. Isaenko, ASSL TOPS XIX (Washington, DC, 1998), p. 524.Google Scholar
  2. 2.
    M.C. Nostrand, S.A. Payne, P.G. Schunemann, and L.I. Isaenko, in Advanced Solid-State-Lasers, OSA TOPS Proceedings Series, vol. 34, eds. by H. Injeyan, U. Keller, C. Marshal (Optical Society of America, Davos, 2000), pp. 59–63.Google Scholar
  3. 3.
    N.W. Jenkins, S.R. Bowman, L.B. Shaw, and J.R. Lindle, J. Lumin. 97, 127 (2002).CrossRefGoogle Scholar
  4. 4.
    L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, and M. Nostrand, Mater. Sci. Eng., B 81, 188 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Rademaker, E. Neumann, G. Huber, S.A. Payne, W.F. Krupke, L.I. Isaenko, and A. Burger, Opt. Lett. 30, 729 (2005).CrossRefGoogle Scholar
  6. 6.
    A.G. Bluiett, M.J. Condon, S.R. Bowman, J. Ganem, and M. Logie, J. Opt. Soc. Am. B 22, 2250 (2005).CrossRefGoogle Scholar
  7. 7.
    K. Rademaker, W.F. Krupke, R.H. Page, S.A. Payne, K. Petermann, G. Huber, A.P. Yelisseyev, L.I. Isaenko, U.N. Roy, A. Burger, K.C. Mandal, and K. Nitsch, J. Opt. Soc. Am. B 21, 2117 (2004).CrossRefGoogle Scholar
  8. 8.
    L. Isaenko, A. Yelisseyev, A. Tkachuk, and S. Ivanova, in MID-Infrared Coherent Sources and Applications, ed. by M. Ebrahim-Zadeh, I.T. Sorokina. (Springer, Dordrecht, 2008), pp. 3–63.Google Scholar
  9. 9.
    A.Y. Tarasova, L.I. Isaenko, V.G. Kesler, V.M. Pashkov, A.P. Yelisseyev, N.M. Denysyuk, and O.Y. Khyzhun, J. Phys. Chem. Solids 73, 674 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Velázquez, A. Ferrier, J.-L. Doualan, and R. Moncorgé, in Solid State Laser, ed. by A.H. Al-Khursan (InTech, Rijeka, Croatia, 2012), pp. 119–142.Google Scholar
  11. 11.
    F.G. Ras, D.J.W. Ijdo, and G.V. Verschoor, Acta Cryst. B 33, 259 (1977).CrossRefGoogle Scholar
  12. 12.
    B.V. Beznosikov, Crystal Chemistry and Prognostication of New ABCX 5 Compounds (Krasnoyarsk: Kerinsky Institute of Physics of SO RAN, 2005).Google Scholar
  13. 13.
    C.D. Mungmode, D.H. Gahane, and S.V. Moharil, in Procendings of the UGC Sponsored National Conference On Advanced Materials (NCAM-2014) (Department of Physics, Nabira Mahavidyalaya, Katol, 2014), pp. 161–163.Google Scholar
  14. 14.
    D.H. Gahane, N.S. Kokode, P.L. Muthal, S.M. Dhopte, and S.V. Moharil, J. Alloys Compd. 484, 660 (2009).CrossRefGoogle Scholar
  15. 15.
    L. Stand, M. Zhuravleva, H. Wei, and C.L. Melcher, Opt. Mater. 46, 59 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Cola, V. Mazzarotti, R. Riccardi, and C. Sinistri, Z. Naturforsch. 26A, 1328 (1971).Google Scholar
  17. 17.
    H.P. Beck, G. Clicqué, H. Nau, and Z. Anorg, Allg. Chem. 536, 35 (1986).CrossRefGoogle Scholar
  18. 18.
    G. Schilling, G. Meyer, and Z. Anorg, Allg. Chem. 622, 759 (1996).CrossRefGoogle Scholar
  19. 19.
    D. Becker, H.P. Beck, and Z. Anorg, Allg. Chem. 630, 1924 (2004).CrossRefGoogle Scholar
  20. 20.
    L.I. Isaenko, A.A. Merkulov, S.V. Melnikova, V.M. Pashkov, and A.Y. Tarasova, Cryst. Growth Des. 9, 2248 (2009).CrossRefGoogle Scholar
  21. 21.
    L.I. Isaenko, A.A. Goloshumova, A.P. Yelisseyev, Y.V. Shubin, O.Y. Khyzhun, D.Y. Naumov, and A.Y. Tarasova, J. Alloys Compd. 682, 832 (2016).CrossRefGoogle Scholar
  22. 22.
    A.Y. Tarasova, A.P. Yelisseyev, L.I. Isaenko, A.A. Goloshumova, and K.E. Zarubina, J. Lumin. 195, 166 (2018).CrossRefGoogle Scholar
  23. 23.
    N.J. Cherepy, G. Hull, A. Drobshoff, S.A. Payne, E. van Loef, C. Wilson, K. Shah, U.N. Roy, A. Burger, L.A. Boatner, W.-S. Choong, and W.W. Moses, Appl. Phys. Lett. 92, 083508 (2008).CrossRefGoogle Scholar
  24. 24.
    K. Yang, M. Zhuravleva, and C.L. Melcher, Phys. Status Solidi RRL 5, 43 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Stand, M. Zhuravleva, A. Lindsey, and C.L. Melcher, Nucl. Instrum. Methods Res. Sect. A 780, 40 (2015).CrossRefGoogle Scholar
  26. 26.
    S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, and M.K. Klintenberg, Nucl. Instrum. Methods Res. Sect. A 505, 111 (2003).CrossRefGoogle Scholar
  27. 27.
    A.H. Reshak, O.Y. Khyzhun, I.V. Kityk, A.O. Fedorchuk, H. Kamarudin, S. Auluck, and O.V. Parasyuk, Sci. Adv. Mater. 5, 316 (2013).CrossRefGoogle Scholar
  28. 28.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. DalCorso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  29. 29.
  30. 30.
    J.P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  31. 31.
    O.Y. Khyzhun, E.A. Zhurakovsky, A.K. Sinelnichenko, and V.A. Kolyagin, J. Electron Spectrosc. Relat. Phenom. 82, 179 (1996).CrossRefGoogle Scholar
  32. 32.
    O.Y. Khyzhun, Powder Metall. Met. Ceram. 38, 284 (1999).CrossRefGoogle Scholar
  33. 33.
    O.Y. Khyzhun and V.A. Kolyagin, J. Alloys Compd. 363, 32 (2004).CrossRefGoogle Scholar
  34. 34.
    D. Briggs and P.M. Seach (eds.), Practical Surface Analysis, 2nd edn, vol. 1: Auger and X-Ray Photoelectron Spectroscopy (Willey, Chichester, 1990).Google Scholar
  35. 35.
    J.C. Riviere and S. Myhra (eds.), Handbook of Surface and Interface Analysis: Methods for Problems Solving, 2nd edn. (CRC Press, Boca Raton, 2009).Google Scholar
  36. 36.
    V.L. Bekenev, O.Y. Khyzhun, A.K. Sinelnichenko, V.V. Atuchin, O.V. Parasyuk, O.M. Yurchenko, Y. Bezsmolnyy, A.V. Kityk, J. Szkutnik, and S. Całus, J. Phys. Chem. Solids 72, 705 (2011).CrossRefGoogle Scholar
  37. 37.
    J.C. Tauc, Optical Properties of Solids (Amsterdam: North-Holland Publishing, 1972).Google Scholar
  38. 38.
    G. Ahmed, Y. Sharma, and B.L. Ahuja, Appl. Radiat. Isot. 67, 1050 (2009).CrossRefGoogle Scholar
  39. 39.
    A. Meisel, G. Leonhardt, and R. Szargan, X-Ray Spectra and Chemical Binding (Berlin: Springer, 1989).CrossRefGoogle Scholar
  40. 40.
    O.Y. Khyzhun, T. Strunskus, and Y.M. Solonin, J. Alloys Compd. 366, 54 (2004).CrossRefGoogle Scholar
  41. 41.
    O.Y. Khyzhun, T. Strunskus, W. Grünert, and C. Wöll, J. Electron Spectrosc. Relat. Phenom. 149, 45 (2005).CrossRefGoogle Scholar
  42. 42.
    V.V. Atuchin, E.N. Galashov, O.Y. Khyzhun, V.L. Bekenev, L.D. Pokrovsky, Y.A. Borovlev, and V.N. Zhdankov, J. Solid State Chem. 236, 24 (2016).CrossRefGoogle Scholar
  43. 43.
    O.Y. Khyzhun, V.L. Bekenev, N.M. Denysyuk, I.V. Kityk, P. Rakus, A.O. Fedorchuk, S.P. Danylchuk, and O.V. Parasyuk, Opt. Mater. 36, 251 (2013).CrossRefGoogle Scholar
  44. 44.
    A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, and O.Y. Khyzhun, Opt. Mater. 53, 64 (2016).CrossRefGoogle Scholar
  45. 45.
    A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, and O.Y. Khyzhun, J. Phys. Chem. Solids 91, 25 (2016).CrossRefGoogle Scholar
  46. 46.
    W. Setyawan and S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010).CrossRefGoogle Scholar
  47. 47.
    J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, A.G. Csaszar, L. Daumont, R.R. Gamache, J.T. Hodges, O.V. Naumenko, O.L. Polyansky, L.S. Rothman, A.C. Vandaele, and N.F. Zobov, Pure Appl. Chem. 86, 71 (2014).CrossRefGoogle Scholar
  48. 48.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  49. 49.
    S. John, C. Soukoulis, M.H. Cohen, and E.N. Economou, Phys. Rev. Lett. 57, 1777 (1986).CrossRefGoogle Scholar
  50. 50.
    S. Baco, A. Chik, and FMd Yassin, J. Sci. Technol. 4, 61 (2012).Google Scholar
  51. 51.
    V.G. Plekhanov, Phys. Status Solidi (b) 57, K55 (1973).CrossRefGoogle Scholar
  52. 52.
    M. Iwanaga, M. Watanabe, and T. Hayashi, Phys. Rev. B 62, 10766 (2000).CrossRefGoogle Scholar
  53. 53.
    J. Kohanoff and N.I. Gidopoulos, Density Functional Theory: Basics, New Trends and Applications, in Handbook of Molecular Physics and Quantum Chemistry, ed. by S. Wilson, vol. 2, Part 5, Chapter 26 (Wiley, Chichester, 2003), pp. 532–568.Google Scholar
  54. 54.
    A.J. Cohen, P. Mori-Sánchez, and W. Yang, Phys. Rev. B 77, 115123 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • O. Y. Khyzhun
    • 1
  • V. L. Bekenev
    • 1
  • N. M. Denysyuk
    • 1
    Email author
  • L. I. Isaenko
    • 2
    • 3
  • A. P. Yelisseyev
    • 2
    • 3
  • A. A. Goloshumova
    • 2
    • 3
  • A. Y. Tarasova
    • 2
    • 3
  1. 1.Frantsevych Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Laboratory of Crystal Growth, Institute of Geology and MineralogySB RASNovosibirskRussian Federation
  3. 3.Laboratory of Functional MaterialsNovosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations