Journal of Electronic Materials

, Volume 48, Issue 5, pp 3096–3104 | Cite as

Electrical Characterization of ZnInSe2/Cu0.5Ag0.5InSe2 Thin-Film Heterojunction

  • H. H. GulluEmail author
  • M. Parlak


ZnInSe2/Cu0.5Ag0.5InSe2 diode structures have been fabricated by thermal evaporation of stacked layers on indium tin oxide-coated glass substrates. Temperature-dependent dark current–voltage measurements were carried out to extract the diode parameters and to determine the dominant conduction mechanisms in the forward- and reverse-bias regions. The heterostructure showed three order of magnitude rectifying behavior with a barrier height of 0.72 eV and ideality factor of 2.16 at room temperature. In the high forward-bias region, the series and shunt resistances were calculated with the help of parasitic resistance relations, yielding room-temperature values of 9.54 × 102 Ω cm2 and 1.23 × 103 Ω cm2, respectively. According to the analysis of the current flow in the forward-bias region, abnormal thermionic emission due to the variation of the ideality factor with temperature and space-charge-limited current processes were determined to be the dominant conduction mechanisms in this heterostructure. In the reverse-bias region, the tunneling mechanism was found to be effective in the leakage current flow with trap density of 106 cm−3. Spectral photocurrent measurements were carried out to investigate the spectral working range of the device structure. The main photocurrent peaks observed in the spectrum corresponded to the band-edge values of the active thin-film layers.


Thin film heterostructure transport mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford: Pergamon, 1975).Google Scholar
  2. 2.
    K.L. Chopra, K.L. Paulson, and V. Dutta, Prog. Photovolt. 12, 69 (2004).CrossRefGoogle Scholar
  3. 3.
    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.L. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 26, 3 (2018).CrossRefGoogle Scholar
  4. 4.
    B.J. Stanbery, Crit. Rev. Sol. Stat. Mater. Sci. 27, 73 (2002).CrossRefGoogle Scholar
  5. 5.
    H.H. Gullu and M. Parlak, Mater. Res. Express 3, 055901 (2016).CrossRefGoogle Scholar
  6. 6.
    H.H. Gullu, O. Bayrakli, and M. Parlak, Thin Solid Films 639, 29 (2017).CrossRefGoogle Scholar
  7. 7.
    H.H. Gullu and M. Parlak, J. Mater. Sci.: Mater. Electron. 29, 11258 (2018).Google Scholar
  8. 8.
    G. Balaji, R. Balasundaraprabhu, N. Prabavathy, M.R. Venkatraman, V. Asokan, N. Muthukumarasamy, M.D. Kannan, and K. Sivakumaran, Mater. Lett. 222, 82 (2018).CrossRefGoogle Scholar
  9. 9.
    R.N. Bhattacharta and K. Ramanathan, Sol. Energy 77, 679 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Adachi, Earth-Abundant Materials for Solar Cells (Chichester: Wiley, 2015).CrossRefGoogle Scholar
  11. 11.
    S. Darwish, A.S. Riad, and H.S. Soliman, Semicond. Sci. Technol. 11, 96 (1998).CrossRefGoogle Scholar
  12. 12.
    S. Venkatachalam, D. Mandalaraj, S.K. Narayandass, S. Velumani, P. Schabes-Retchkiman, and J.A. Ascencio, Mater. Chem. Phys. 103, 305 (2007).CrossRefGoogle Scholar
  13. 13.
    G.K. Rao, K.V. Bangera, and G.K. Shivakumar, Solid-State Electron. 54, 787 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Jeyakumar, S.T. Lakshmikumar, and A.C. Rastogi, Mater. Res. Bull. 37, 617 (2002).CrossRefGoogle Scholar
  15. 15.
    P.V. Shapkin, A.S. Nasibov, Y.F. Vaksman, Y.A. Nitsuk, and Y.N. Purtov, Inorg. Mater. 42, 845 (2006).CrossRefGoogle Scholar
  16. 16.
    K. Lott, S. Shinkarenko, O. Volobujeva, L. Turn, T. Nirk, A. Öpik, R. Nisumaa, U. Kallavus, M. NÖges, V. Mikli, M. Viljus, E. Gorokhova, G. Anan’eva, A. Grebennik, and Vishnjakov, Phys. Status Solidi B 244, 1623 (2007).CrossRefGoogle Scholar
  17. 17.
    H.H. Gullu and M. Parlak, Mod. Phys. Lett. B 31, 1750043 (2017).CrossRefGoogle Scholar
  18. 18.
    H.H. Gullu, E. Coskun, and M. Parlak, Optik 144, 603 (2017).CrossRefGoogle Scholar
  19. 19.
    H.H. Gullu and M. Parlak, Surf. Rev. Lett.
  20. 20.
    H.H. Gullu and M. Parlak, Energy Procedia 102, 110 (2016).CrossRefGoogle Scholar
  21. 21.
    K. Yilmaz, M. Parlak, and C. Ercelebi, Semicond. Sci. Technol. 22, 1268 (2007).CrossRefGoogle Scholar
  22. 22.
    E. Coskun, H.H. Gullu, I. Candan, O. Bayrakli, M. Parlak, and C. Ercelebi, Mater. Sci. Semicond. Process. 34, 138 (2015).CrossRefGoogle Scholar
  23. 23.
    W. Mönch, Electronic Properties of Semiconductor Interfaces (New York: Springer, 2004).CrossRefGoogle Scholar
  24. 24.
    A.G. Milnes and D.L. Feucht, Heterojunction and Metal-Semiconductor Junctions (New York: Academic, 1972).Google Scholar
  25. 25.
    B.L. Sharma and R.K. Purohit, Semiconductor Heterojunctions (Oxford/New York/Toronto/Sydney: Pergamon, 1974).Google Scholar
  26. 26.
    B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum, 1984).CrossRefGoogle Scholar
  27. 27.
    H. Uslu, S. Altindal, I. Polat, H. Bayrak, and E. Bacaksiz, J. Alloys Compd. 509, 5555 (2011).CrossRefGoogle Scholar
  28. 28.
    S.M. Sze and K.N. Kwok, Physics of Semiconductor Devices (USA: Wiley, 2007).Google Scholar
  29. 29.
    P. Singh, P.K. Rout, H. Pandey, and A. Dogra, J. Mater. Sci. 53, 4806 (2018).CrossRefGoogle Scholar
  30. 30.
    M.A. Lampert, Rep. Prog. Phys. 27, 329 (1964).CrossRefGoogle Scholar
  31. 31.
    R.D. Gould and M.S. Rahman, J. Phys. D Appl. Phys. 14, 79 (1981).CrossRefGoogle Scholar
  32. 32.
    R.D. Gould, J. Appl. Phys. 53, 3353 (1982).CrossRefGoogle Scholar
  33. 33.
    A.O. Odour and R.D. Gould, Thin Solid Films 270, 387 (1995).CrossRefGoogle Scholar
  34. 34.
    M. Kaleli, M. Parlak, and C. Ercelebi, Semicond. Sci. Technol. 26, 105013 (2011).CrossRefGoogle Scholar
  35. 35.
    F. Yakuphanoglu, N. Tugluoglu, and S. Karadeniz, Phys. B 392, 188 (2007).CrossRefGoogle Scholar
  36. 36.
    S. Vatavu and P. Gasin, Thin Solid Films 515, 6179 (2007).CrossRefGoogle Scholar
  37. 37.
    C. Ercelebi, A.W. Brinkman, T.S. Furlong, and J. Woods, J. Cryst. Growth 101, 162 (1990).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Center for Solar Energy Research and Applications (GÜNAM), Middle East Technical UniversityAnkaraTurkey

Personalised recommendations