Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3043–3049 | Cite as

Design and Simulation of a Frequency Doubler Using Graphene Nanoribbon Field Effect Transistors for Communication Devices

  • Preetika SharmaEmail author
  • Shuchi Gupta
  • Inderpreet Kaur
Article
  • 19 Downloads

Abstract

Modeling of a graphene nanoribbon field effect transistor (GNRFET) as a frequency doubler has been extensively explored for developing future communication applications. For its analysis, different types of modifications are applied to the GNRFET model simulated in a Hewlett simulation program with an integrated circuit. The model is demonstrated for its frequency response and conversion gain. It uses an intrinsic GNRFET for frequency doubling which clearly shows a distortionless sinusoidal output at a peak frequency of 20.6 MHz for an applied input of 10.3 MHz. However, after applying doping at different fractions of 0.3%, 3% and 30% in the transistor model, signal decay appears at 30% doping fractions. Results are also shown for increasing the number of dimers (N), increasing the number of channels for conduction and the impact of changing the dielectric constant on the doubler model performance. It is found that as the channel width increases, an increase in the conversion gain from − 26.05 dB to − 20 dB results from an increase in N from 8 to 20 dimer lines. Further, if four graphene nanoribbon (GNR) channels are used in the doubler operation instead of one GNR channel, then a high conversion gain of − 16.47 dB as compared to − 26.05 dB for an individual GNR channel is also calculated. Regarding the impact of different dielectrics, it is revealed that, similar to a conventional transistor, a graphene transistor with a high-K-value dielectric presents the highest gain, but with a high distortion in the output signal. However, using a conventional silicon dioxide (SiO2) dielectric having a low K value gives lower conversion gain, but ideal frequency doubling in the output is attained.

Keywords

GNRFET frequency doubler communication conversion gain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M.R. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, IEEE Trans. Nanotechnol. 10, 727 (2011).CrossRefGoogle Scholar
  2. 2.
    T. Palacios, A. Hsu, and H. Wang, IEEE Commun. Mag. 48, 122 (2010).CrossRefGoogle Scholar
  3. 3.
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle Scholar
  4. 4.
    P. Sharma, S. Singh, S. Gupta, and I. Kaur, J. Mater. Sci. Mater. Electron. 28, 7668 (2017).CrossRefGoogle Scholar
  5. 5.
    M.E. Ramón, K.N. Parrish, S.F. Chowdhury, C.W. Magnuson, H.C. Movva, R.S. Ruoff, S.K. Banerjee, and D. Akinwande, IEEE Trans. Nanotechnol. 11, 877 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Wang, A. Hsu, K.K. Kim, J. Kong, and T. Palacios, in Proceedings of the IEEE Electron Devices Meeting (IEDM) (IEEE, 2010), pp 23.6.1–23.6.4.Google Scholar
  7. 7.
    H. Wang, D. Nezich, J. Kong, and T. Palacios, IEEE Electron Device Lett. 30, 547 (2009).CrossRefGoogle Scholar
  8. 8.
    C. Cheng, B. Huang, X. Mao, Z. Zhang, Z. Zhang, Z. Geng, P. Xue, and H. Chen, Sci. Rep. 7, 46605 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, IEEE Electron Device Lett. 31, 906 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Chen, S. Lee, V.V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, Nat. Nanotechnol. 8, 923 (2013).CrossRefGoogle Scholar
  11. 11.
    Y.-Y. Chen, A. Rogachev, A. Sangai, G. Iannaccone, G. Fiori, D. Chen, in Proceedings of the Design, Automation and Test in Europe (EDA Consortium) (2013), pp 1789–1794.Google Scholar
  12. 12.
    Z. Hu, D. Prasad Sinha, J. Ung Lee, and M. Liehr, J. Appl. Phys. 115, 194507 (2014).CrossRefGoogle Scholar
  13. 13.
    P. Vimala and N.B. Balamurugan, J. Electr. Eng. Technol. 9, 649 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Wang, A.L. Hsu, and T. Palacios, IEEE Microw. Mag. 13, 114 (2012).CrossRefGoogle Scholar
  15. 15.
    J.W. Chung, W.E. Hoke, E.M. Chumbes, and T. Palacios, IEEE Electron Device Lett. 31, 195 (2010).CrossRefGoogle Scholar
  16. 16.
    Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2008).CrossRefGoogle Scholar
  17. 17.
    M.E. Ramón, K.N. Parrish, S.F. Chowdhury, C.W. Magnuson, H.C. Movva, R.S. Ruoff, S.K. Banerjee, and D. Akinwande, IEEE Trans. Nanotechnol. 11, 877 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Gholipour, Y.-Y. Chen, A. Sangai, N. Masoumi, and D. Chen, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2, 650 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Liu, Y. Liu, and D. Zhu, J. Mater. Chem. 21, 3335 (2011).CrossRefGoogle Scholar
  20. 20.
    S.S. Chauhan, P. Srivastava, and A.K. Shrivastava, Solid State Commun. 154, 69 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo, and L. Peng, Nanoscale 2015, 10954 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.-N. Mei, J. Shi, Z. Gao, and J. Lu, Sci. Rep. 3, 1314 (2013).CrossRefGoogle Scholar
  23. 23.
    W.-X. Wang, M. Zhou, X. Li, S.-Y. Li, X. Wu, W. Duan, and L. He, Phys. Rev. B 93, 241403 (2016).CrossRefGoogle Scholar
  24. 24.
    D.Y. Jung, S.Y. Yang, H. Park, W.C. Shin, J.G. Oh, B.J. Cho, and S.-Y. Choi, Nano Converg. 2, 11 (2015).CrossRefGoogle Scholar
  25. 25.
    P. Sharma, S. Singh, S. Gupta, and I. Kaur, J. Mater. Sci. Mater. Electron. 29, 2883 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, and X. Duan, Adv. Mater. 22, 1941 (2010).CrossRefGoogle Scholar
  27. 27.
    I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim, and K.L. Shepard, in Proceedings of the IEEE (2013), pp. 1609–1619.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.UIETPanjab UniversityChandigarhIndia
  2. 2.Biomolecular Electronics and Nanotechnology GroupCSIR Central Scientific Instruments OrganisationChandigarhIndia

Personalised recommendations