Journal of Electronic Materials

, Volume 48, Issue 5, pp 3017–3025 | Cite as

Increased Degradation Capacity of Methylene Blue Dye Using Mg-doped ZnO Nanoparticles Decorated by Ag0 Nanoparticles

  • C. H. R. Paula
  • N. F. Andrade NetoEmail author
  • L. M. P. Garcia
  • R. M. Nascimento
  • C. A. Paskocimas
  • M. R. D. Bomio
  • F. V. Motta


Photocatalytic activity has been widely used for the treatment of organic effluents, mainly those generated by textile industries. Zinc oxide is widely investigated for this application due to its low cost, non-toxicity and high efficiency. In this work, the photocatalytic properties of ZnO:xMg (x = 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) decorated with Ag0 were investigated against methylene blue dye (MB). Initially, the nanostructures of ZnO:xMg were produced by the microwave-assisted hydrothermal method, and the nanoparticles of Ag0 were deposited by ultraviolet (UV) photoreduction. The structural characteristics of the powders were determined by x-ray diffraction, the morphologies were investigated by field emission scanning electron microscopy (FE-SEM) and the optical absorbance of the photocatalysts was characterized by the diffuse reflectance spectra [UV–visible light (UV–Vis)]. The photocatalytic properties were estimated by degradation of MB, and the capacity for reuse of the powders was estimated by application in three consecutive cycles. Undoped ZnO powders reduced 84% of MB concentration, while the ZnO:8%Mg sample reduced 97% of it, indicating that doping with Mg2+ is efficient in increasing the degradation capacity of ZnO against MB degradation. The deposition of metallic silver nanoparticles on the ZnO surface considerably increases the photocatalytic efficiency, in which after 18 min, the 8%Mg sample completely degraded the MB. The reuse tests showed that the powders maintain their photocatalytic activity after three cycles and can be used for such application without generating secondary residues.


ZnO:xMg hydrothermal method Ag0 photoreduction photocatalytic reuse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    B. Bohnenkamp, J.-H. Linnemann, I.J. Junger, E. Schwenzfeier-Hellkamp, and A. Ehrmann, Optik 168, 282 (2018).CrossRefGoogle Scholar
  2. 2.
    D. Shu, K. Fang, X. Liu, Y. Cai, X. Zhang, and J. Zhang, J. Clean. Prod. 196, 935 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Gao, H. Liu, H. Zhang, F. Danna, A. Hou, and K. Xie, J. Clean. Prod. 200, 48 (2018).CrossRefGoogle Scholar
  4. 4.
    X. Huan-Yan, B. Li, T.-N. Shi, Y. Wang, and S. Komarneni, J. Colloid Interface Sci. 532, 161 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Byrne, G. Subramanian, and S.C. Pillai, J. Environ. Chem. Eng. 6, 3531 (2018).CrossRefGoogle Scholar
  6. 6.
    S.T. Kochuveedu, J. Nanomater. 2016, 12 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev. 43, 7520 (2014).CrossRefGoogle Scholar
  8. 8.
    M.-Q. Yang, and X. Yi-Jun, Nanoscale Horizons 1, 185 (2016).CrossRefGoogle Scholar
  9. 9.
    M.-Q. Yang, C. Han, and X. Yi-Jun, J. Phys. Chem. C 119, 27234 (2015).CrossRefGoogle Scholar
  10. 10.
    F. Zhang, X.-Q. Kong, Q. Li, T.-T. Sun, C. Chai, W. Shen, Z.-Y. Hong, X.-W. He, W.-Y. Li, and Y.-K. Zhang, Talanta 148, 108 (2016).CrossRefGoogle Scholar
  11. 11.
    N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, Plasmonics 14, 79 (2019)Google Scholar
  12. 12.
    A. Rosli, Z. Awang, S.S. Shariffudin, and S.H. Herman: Annealing Temperature Dependence of ZnO Nanostructures Grown by Facile Chemical Bath Deposition for EGFET pH Sensors. (2018).Google Scholar
  13. 13.
    L.G.A. Carvalho, L.A. Rocha, J.M.M. Buarque, R.R. Gonçalves, C.S. Nascimento Jr, M.A. Schiavon, S.J.L. Ribeiro, and J.L. Ferrari, J. Lumin. 159, 223 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Schmidt-Mende, and J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007).CrossRefGoogle Scholar
  15. 15.
    Z.L. Wang, Mater. Today 7, 26 (2004).CrossRefGoogle Scholar
  16. 16.
    M.A. Hernández-Carrillo, R. Torres-Ricárdez, M.F. García-Mendoza, E. Ramírez-Morales, L. Rojas-Blanco, L.L. Díaz-Flores, G.E. Sepúlveda-Palacios, F. Paraguay-Delgado, and G. Pérez-Hernández, Catal. Today (2018).
  17. 17.
    M.M. Ovhal, A. Santhosh Kumar, P. Khullar, M. Kumar, and A.C. Abhyankar, Mater. Chem. Phys. 195, 58 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Das, P.G. Roy, S. Sen, and A. Bhattacharyya, Thin Solid Films 662, 54 (2018).CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, L. Liu, T. Cui, G. Tong, and W. Wenhua, Appl. Surf. Sci. 412, 58 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Xiao, W. Zhou, Y. Zhang, L. Tian, H. Liu, and P. Yong, J. Nanomater. 2016, 11 (2016).CrossRefGoogle Scholar
  21. 21.
    P.K. Labhane, S.H. Sonawane, G.H. Sonawane, S.P. Patil, and V.R. Huse, J. Phys. Chem. Solids 114, 71 (2018).CrossRefGoogle Scholar
  22. 22.
    Y. Wang, R. Shi, J. Lin, and Y. Zhu, Energy Environ. Sci. 4, 2922 (2011).CrossRefGoogle Scholar
  23. 23.
    Y.-Z. Xing, H.F. Zhang, X.-B. Liu, and Y.-M. Zheng, Nucl. Phys. A 957, 135 (2017).CrossRefGoogle Scholar
  24. 24.
    Sh Sohrabnezhad, and A. Seifi, Appl. Surf. Sci. 386, 33 (2016).CrossRefGoogle Scholar
  25. 25.
    W.L. Ong, S. Natarajan, B. Kloostra, and G.H. HO, Nanoscale 5, 5568 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Kuriakose, V. Choudhary, B. Satpati, and S. Mohapatra, Beilstein J. Nanotechnol. 5, 639 (2014).CrossRefGoogle Scholar
  27. 27.
    B. Toby, J. Appl. Crystallogr. 34, 210 (2001).CrossRefGoogle Scholar
  28. 28.
    D.L. Wood, and J. Tauc, Phys. Rev. B 5, 3144 (1972).CrossRefGoogle Scholar
  29. 29.
    H. Jiang, X. Zhang, G. Wen, X. Feng, L. Zhang, and Y. Weng, Chem. Phys. Lett. 711, 100 (2018).CrossRefGoogle Scholar
  30. 30.
    S.A. Ibitoye, and A.A. Afonja, J. Miner. Mater. Charact. Eng. 07, 10 (2008).Google Scholar
  31. 31.
    H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  32. 32.
    A.N. Mallika, A. Ramachandra Reddy, K. Sowri Babu, Ch Sujatha, and K. Venugopal Reddy, Opt. Mater. 36, 879 (2014).CrossRefGoogle Scholar
  33. 33.
    M.J. McKelvy, R. Sharma, A.V.G. Chizmeshya, R.W. Carpenter, and K. Streib, Chem. Mater. 13, 926 (2001).CrossRefGoogle Scholar
  34. 34.
    F.V. Motta, A.P.A. Marques, M.S. Li, M.F.C. Abreu, C.A. Paskocimas, M.R.D. Bomio, R.P. Souza, J.A. Varela, and E. Longo, J. Alloy. Compd. 553, 338 (2013).CrossRefGoogle Scholar
  35. 35.
    Y. Su-Hua, H. Sheng-Yu, and T. Cheng-Hsun, Jpn. J. Appl. Phys. 49, 06GJ06 (2010).Google Scholar
  36. 36.
    J. Iqbal, T. Jan, M. Ismail, N. Ahmad, A. Arif, M. Khan, M. Adil, H. Sam ul, and A. Arshad, Ceram. Int. 40, 7487 (2014).CrossRefGoogle Scholar
  37. 37.
    N.F. Andrade Neto, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, Mater. Sci. Semicond. Process. 93, 123 (2019).CrossRefGoogle Scholar
  38. 38.
    B. Dindar, and A.C. Güler, Environ. Nanotechnol. Monit. Manag. 10, 457 (2018).Google Scholar
  39. 39.
    C. Jaramillo-Páez, J.A. Navío, and M.C. Hidalgo, J. Photochem. Photobiol. A 356, 112 (2018).CrossRefGoogle Scholar
  40. 40.
    L. Liu, Z. Liu, Y. Yang, M. Geng, Y. Zou, M. Babar Shahzad, Y. Dai, and Y. Qi, Ceram. Int. 44, 19998 (2018).CrossRefGoogle Scholar
  41. 41.
    J. Kaur, K. Gupta, V. Kumar, S. Bansal, and S. Singhal, Ceram. Int. 42, 2378 (2016).CrossRefGoogle Scholar
  42. 42.
    I. Zammit, V. Vaiano, G. Iervolino, and L. Rizzo, RSC Adv. 8, 26124 (2018).CrossRefGoogle Scholar
  43. 43.
    Z.M. Gibbs, A. LaLonde, and G. Jeffrey Snyder, New J. Phys. 15, 075020 (2013).CrossRefGoogle Scholar
  44. 44.
    Y. Wang, J. Piao, L. Yunhao, S. Li, and J. Yi, Mater. Res. Bull. 83, 408 (2016).CrossRefGoogle Scholar
  45. 45.
    M.M. Momeni, M. Hakimian, and A. Kazempour, Ceram. Int. 41, 13692 (2015).CrossRefGoogle Scholar
  46. 46.
    N. Neto, P.M. Oliveira, R. Nascimento, C.A. Paskocimas, M.R.D. Bomio, and F.V. Motta, Ceram Int 45, 651 (2018).CrossRefGoogle Scholar
  47. 47.
    R. Gupta, N.K. Eswar, J.M. Modak, and G. Madras, Catal. Today 300, 71 (2018).CrossRefGoogle Scholar
  48. 48.
    L.M.P. Garcia, M.T.S. Tavares, N.F. Andrade Neto, R.M. Nascimento, C.A. Paskocimas, E. Longo, M.R.D. Bomio, and F.V. Motta, J. Mater. Sci. Mater. Electron. 29, 6530 (2018).CrossRefGoogle Scholar
  49. 49.
    W.-K. Wang, J.-J. Chen, M. Gao, Y.-X. Huang, X. Zhang, and Y. Han-Qing, Appl. Catal. B 195, 69 (2016).CrossRefGoogle Scholar
  50. 50.
    L. Li, Y. Yang, X. Liu, R. Fan, Y. Shi, S. Li, L. Zhang, X. Fan, P. Tang, X. Rui, W. Zhang, Y. Wang, and L. Ma, Appl. Surf. Sci. 265, 36 (2013).CrossRefGoogle Scholar
  51. 51.
    J. Dantas, E. Leal, D.R. Cornejo, and A.C.F.M. Costa, Arab. J. Chem. (2018).
  52. 52.
    S. Dehghan, B. Kakavandi, and R.Z. Kalantary, J. Mol. Liq. 264, 98 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. H. R. Paula
    • 1
  • N. F. Andrade Neto
    • 1
    Email author
  • L. M. P. Garcia
    • 1
  • R. M. Nascimento
    • 1
  • C. A. Paskocimas
    • 1
  • M. R. D. Bomio
    • 1
  • F. V. Motta
    • 1
  1. 1.LSQM – Laboratory of Chemical Synthesis of Materials – Department of Materials EngineeringFederal University of Rio Grande do Norte – UFRNNatalBrazil

Personalised recommendations