Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3069–3077 | Cite as

Photocatalytic Behavior of SILAR-Grown Nano-flaked CdS

  • R. JayakrishnanEmail author
  • Varun G. Nair
  • Rani Abraham
Article
  • 10 Downloads

Abstract

An undemanding and cost-effective low-temperature sequential ionic layer adsorption reaction process has been used to synthesize cadmium sulfide (CdS) thin films on glass substrates. The as-deposited films were photoconductive in nature with a photosensitivity of ~ 10, and their sensitivity could be improved using a post-deposition annealing process sequence to ~ 650. We have grown nano-flaked CdS and tested their efficacy for the photo-catalytic degradation of Rhodamine B dye molecules. We report that the nano-flaked CdS has an inherent Rhodamine B dye decay pathway which is active even in the absence of visible radiation. We also report on the Rhodamine B dye decay by the nano-flaked CdS under direct sunlight illumination. Our results prove that the kinetics of the photocatalysis is directly related to the photoconductive nature of the films. The highly photosensitive nature of the nano-flaked CdS films leads to alternate dye degradation pathways which enhance the kinetics of the reaction.

Keywords

Semiconductor photocatalysis sunlight photoconductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

R.J. would like to thank Funding for this work by KSCSTE under 006/SRSPS/2014/CSTE. The authors acknowledge DST for financial aid vide Scheme No. SR/FST/College202/2014 and KSCSTE for financial aid vide Scheme No. 607/2015/KSCSTE.

References

  1. 1.
    C. Minero, E. Pelizzetti, P. Pichat, M. Sega, and M. Vincenti, Environ. Sci. Technol. 29, 2226 (1995).CrossRefGoogle Scholar
  2. 2.
    D. Meissner, R. Memming, and B. Kastening, J. Phys. Chem. 92, 3476 (1988).CrossRefGoogle Scholar
  3. 3.
    L. Gao and L.Q. Jiang, Mater. Chem. Phys. 91, 313 (2005).CrossRefGoogle Scholar
  4. 4.
    L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.O. Velthaus, and H.W. Schock, Appl. Phys. Lett. 62, 597 (1993).CrossRefGoogle Scholar
  5. 5.
    C. Li, T. Ahmed, M. Ma, T. Edvinsson, and J. Zhu, Appl. Catal. B Environ. 138, 175 (2013).CrossRefGoogle Scholar
  6. 6.
    Y.G. Wang, Y.L. Xu, Y.Z. Wang, H.F. Qin, X. Li, Y.H. Zuo, S.F. Kang, and L.F. Cui, Catal. Commun. 74, 75 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, and M.S. Al-Assiri, Mater. Des. 98, 223 (2016).CrossRefGoogle Scholar
  8. 8.
    C.H. Lu, R.Y. Chen, X. Wu, M.F. Fan, Y.H. Liu, Z.G. Le, S.J. Jiang, and S.Q. Song, Appl. Surf. Sci. 360, 1016 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Rochkind, S. Pasternak, and Y. Paz, Molecules 20, 88 (2015).CrossRefGoogle Scholar
  10. 10.
    N.T. Hahn, S. Hoang, J.L. Self, and C.B. Mullins, ACS Nano 6, 7712 (2012).CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, Q. An, X. Luan, H. Huang, X. Li, Z. Meng, W. Tong, X. Chen, P.K. Chu, and Y. Zhang, Nanoscale 7, 14002 (2015).CrossRefGoogle Scholar
  12. 12.
    T. Tong, C.M. Wilke, J. Wu, C.T.T. Binh, J.J. Kelly, J.F. Gaillard, and K.A. Gray, Environ. Sci. Technol. 49, 8113 (2015).CrossRefGoogle Scholar
  13. 13.
    W.L. Ong, Y.-F. Lim, J.L.T. Ong, and G.W. Ho, J. Mater. Chem. A 3, 6509 (2015).CrossRefGoogle Scholar
  14. 14.
    T. Watanabe, T. Takizawa, and K. Honda, J. Phys. Chem. 81, 1845 (1977).CrossRefGoogle Scholar
  15. 15.
    R. Ortega-Borges and D. Lincot, J. Electrochem. Soc. 140, 3464 (1993).CrossRefGoogle Scholar
  16. 16.
    I.O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).CrossRefGoogle Scholar
  17. 17.
    B.R. Lanning and J.H. Armstrong, Int. J. Solar Energy 12, 247 (1992).CrossRefGoogle Scholar
  18. 18.
    R. Jayakrishnan, V.G. Nair, A.M. Anand, and M. Venugopal, J. Semicond. 39, 033002 (2018).CrossRefGoogle Scholar
  19. 19.
    R. Jayakrishnan, A.S. Kurian, V.G. Nair, and M.R. Joseph, Mater. Chem. Phys. 180, 149 (2016).CrossRefGoogle Scholar
  20. 20.
    K.L. Chopra, Thin Film Phenomena (New York: MC Graw Hill Co., 1969).Google Scholar
  21. 21.
    R. Jayakrishnan, J. Electron. Mater. 47, 2249 (2018).CrossRefGoogle Scholar
  22. 22.
    R. Jayakrishnan, V.G. Nair, A.M. Anand, and M. Venugopal, J. Semicond. 39, 033002 (2018).CrossRefGoogle Scholar
  23. 23.
    P. Scherrer, Mathematisch-Physikalische Klasse 2, 98 (1918).Google Scholar
  24. 24.
    J. Langford and A. Wilson, J. Appl. Crystallogr. 11, 102 (1978).CrossRefGoogle Scholar
  25. 25.
    K. Manikandan, P. Mani, P.F. Hilbert Inbaraj, T.D. Joseph, V. Thangaraj, C. Surendra Dilip, and J. Joseph Prince, Indian J. Pure Appl. Phys. 52, 354 (2014).Google Scholar
  26. 26.
    K. Durose, M.A. Cousins, D.S. Boyle, J. Beier, and D. Bonnet, Thin Solid Films 403–404, 396 (2002).CrossRefGoogle Scholar
  27. 27.
    N. Romeo, A. Bosio, R. Tedschedi, A. Romeo, and V. Canevari, Mater. Chem. Phys. 66, 201 (2000).CrossRefGoogle Scholar
  28. 28.
    M.D.G. Potter, D.P. Halliday, M. Cousins, and K. Durose, Thin Solid Films 361–362, 248 (2000).CrossRefGoogle Scholar
  29. 29.
    Y. Li, S. Sun, M. Ma, Y. Ouyang, and W. Yan, Chem. Eng. J. 142, 147 (2008).CrossRefGoogle Scholar
  30. 30.
    S.W. Biernacki, Solid State Commun. 88, 365 (1993).CrossRefGoogle Scholar
  31. 31.
    A.A. Istratov and O.F. Vyvenko, J. Appl. Phys. 80, 4400 (1996).CrossRefGoogle Scholar
  32. 32.
    L. Kronik and Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).CrossRefGoogle Scholar
  33. 33.
    K. Yamaguchi, T. Yoshida, and H. Minoura, Thin Solid Films 354, 431 (2003).Google Scholar
  34. 34.
    S. Chakrabarti, D. Ganguli, and S. Chaudhuri, Physica E 24, 333 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Photovoltaic Research CenterChristian CollegeChengannurIndia
  2. 2.Department of ChemistryChristian CollegeChengannurIndia

Personalised recommendations