Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3000–3005 | Cite as

Comparative Study on Morphological and Electrochemical Properties of Nickel–Cobalt Double Hydroxide, Cobalt Hydroxide, and Nickel Hydroxide

  • Kyung Ho KimEmail author
  • Sena Motoyama
  • Yoshio Abe
  • Midori Kawamura
  • Takayuki Kiba
Article
  • 16 Downloads

Abstract

The morphological and electrochemical properties of nickel–cobalt double hydroxide (Ni-Co DH), cobalt hydroxide [Co(OH)2], and nickel hydroxide [Ni(OH)2] prepared directly on a transparent conductive oxide substrate via a simple one-pot wet-chemical method have been investigated and compared. All samples were composed of nanosheets vertically aligned on the substrate. Comparison of the results showed that Ni-Co DH with submicrometer-scale pores had more compact structure than Ni(OH)2 or Co(OH)2. Moreover, the highly symmetric cyclic voltammetry (CV) curves of Ni-Co DH indicated its good electrochemical reversibility. The specific capacitance value of Ni-Co DH was ∼ 286 F/g and ∼ 210 F/g at scan rate of 2 mV/s and 100 mV/s, respectively, indicating its better rate capability, particularly at high scan rate, than Ni(OH)2 or Co(OH)2. In addition, after CV cycling test, the Ni-Co DH nanosheets showed no noticeable morphological change. Furthermore, the electrochromic performance of Ni-Co DH was sustained over 10000 s. Thus, Ni-Co DH prepared via a facile one-step process exhibited promising characteristics as a cost-effective functional material for use in electrochemical devices.

Keywords

Ni-Co DH Co(OH)2 Ni(OH)2 nanosheets electrochemical devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

11664_2019_7051_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1022 kb)

References

  1. 1.
    D.S. Hall, D.J. Lockwood, C. Bock, and B.R. MacDougall, Proc. R. Soc. A 471, 0792 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Li, Y. Yu, M.B. Starr, Z. Li, and X. Wang, J. Phys. Chem. Lett. 6, 3410 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, D. Zhang, and H. Liu, J. Power Sources 195, 3135 (2010).CrossRefGoogle Scholar
  4. 4.
    E.G.C. Neiva, M.M. Oliveira, M.F. Bergamini, L.H. Marcolino Jr., and A.J.G. Zarbin, Sci. Rep. 6, 33806 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Pu, Y. Tong, S. Wang, E. Sheng, and Z. Wang, J. Power Sources 250, 250 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Zha, H. Sun, Y. Fu, X. Ouyang, and X. Wang, Electrochim. Acta 236, 18 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Xing, F. Musharavati, H. Li, E. Zalezhad, O.K.S. Hui, S. Bae, and B.-Y. Cho, RSC Adv. 7, 38945 (2017).CrossRefGoogle Scholar
  8. 8.
    J.S. Chen, Y. Gui, and D.J. Blackwood, Electrochim. Acta 188, 863 (2016).CrossRefGoogle Scholar
  9. 9.
    Z.-A. Hu, Y.-L. Xie, Y.-X. Wang, H.-Y. Wu, Y.-Y. Yang, and Z.-Y. Zhang, Electrochim. Acta 54, 2737 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Li, Z. Hu, X. Shao, P. Cheng, S. Li, W. Yu, W. Lin, and D. Yuan, Sci. Rep. 6, 18737 (2016).CrossRefGoogle Scholar
  11. 11.
    W. Jiao and L. Zhang, Curr. Appl. Phys. 16, 115 (2016).CrossRefGoogle Scholar
  12. 12.
    K.H. Kim, M. Mikami, Y. Abe, M. Kawamura, and T. Kiba, Thin Solid Films 654, 49 (2018).CrossRefGoogle Scholar
  13. 13.
    K.H. Kim, M. Mikami, Y. Abe, M. Kawamura, and T. Kiba, Int. J. Electrochem. Sci. 13, 7655 (2018).CrossRefGoogle Scholar
  14. 14.
    W.Q. Wang, Z.J. Yao, X.L. Wang, X.H. Xia, C.D. Gu, and J.P. Tu, J. Colloid Interface Sci. 535, 300 (2019).CrossRefGoogle Scholar
  15. 15.
    Z. Bi, X. Li, Y. Chen, X. Xu, S. Zhang, and Q. Zhu, Electrochim. Acta 227, 61 (2017).CrossRefGoogle Scholar
  16. 16.
    Y. Abe, S. Yamauchi, M. Kawamura, K.H. Kim, and T. Kiba, J. Vac. Sci. Technol. A 36, 02C102 (2018).CrossRefGoogle Scholar
  17. 17.
    X. Wang, L. Wan, T. Yu, Y. Zhou, J. Guan, Z. Yu, Z. Li, and Z. Zou, Mater. Chem. Phys. 126, 494 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, and Y. Li, Sci. Rep. 4, 5787 (2014).CrossRefGoogle Scholar
  19. 19.
    M.A. Vidales-Hurtado and A. Mendoza-Galván, Solid State Ion. 179, 2065 (2008).CrossRefGoogle Scholar
  20. 20.
    Z. Pu, Q. Liu, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Electrochim. Acta 409, 252 (2013).CrossRefGoogle Scholar
  21. 21.
    Q. Wang, S. Liu, H. Sun, and Q. Lu, RSC Adv. 5, 48181 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Wang, H.S. Casalongue, Y. Liang, and H. Dai, J. Am. Chem. Soc. 132, 7472 (2010).CrossRefGoogle Scholar
  23. 23.
    D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, and J. Yu, Electrochim. Acta 156, 108 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kyung Ho Kim
    • 1
    Email author
  • Sena Motoyama
    • 1
  • Yoshio Abe
    • 1
  • Midori Kawamura
    • 1
  • Takayuki Kiba
    • 1
  1. 1.Department of Materials Science and EngineeringKitami Institute of TechnologyKitamiJapan

Personalised recommendations