Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3317–3323 | Cite as

Influence of Working Pressure on the Structural, Optical and Electrical Properties of Cr-Doped ZnO Thin Films

  • L. F. Han
  • C. F. FuEmail author
  • C. Liu
  • X. B. Liu
  • R. H. Xie
Article
  • 6 Downloads

Abstract

In this work, Cr-doped ZnO thin films with the hexagonal wurtzite structure and c-axis preferred orientation are prepared with the radio frequency magnetron sputtering technique. The variation of working pressure, from 1.3 Pa to 1.9 Pa, produces variations in the structural, optical and electrical properties of the films. X-ray diffraction results indicate that the intensity of the (002) peak in the films first increases, and then decreases, with an increase in the working pressure. Cr-doped ZnO thin films deposited at 1.5 Pa have perfect optical and electrical properties, a maximal crystal size of 13.43 nm, a transmittance of 85.40%, a minimal dislocation density of 5.544 × 1015 lines m−2, a quality factor of 7.43 × 104 S cm−1, a small residual stress of −0.135 GPa and a low resistivity of 1.15 × 10−3 Ω cm. The band gaps of the films increase with an increase in the working pressure. The results show that the working pressure influences the structural, optical and electrical properties of Cr-doped ZnO thin films.

Keywords

Cr-doped ZnO thin films working pressure RF magnetron sputtering optical and electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work has been supported by the Natural Science Foundation of China (NSFC, Grant Nos. 51774092, 51474069), Youth Science Foundation of Northeast Petroleum University of China (Grant No. 2018QNL-39) and Postdoctoral Science Foundation of China (2016M601400).

References

  1. 1.
    X. Wen, Y. Han, C.B. Yao, K.X. Zhang, J. Li, W.J. Sun, Q.H. Li, M. Zhang, and J.D. Wu, Opt. Mater. 77, 67 (2018).CrossRefGoogle Scholar
  2. 2.
    M. Dutta, T. Ghosh, and D. Basak, J. Electron. Mater. 38, 2335 (2009).CrossRefGoogle Scholar
  3. 3.
    M.N.H. Mia, M.F. Pervez, M. Khalid Hossain, M. Reefaz Rahman, M. Jalal Uddin, M.A. Al Mashud, H.K. Ghosh, and M. Hoq, Res. Phys. 7, 2683 (2017).Google Scholar
  4. 4.
    P. Murkute, H. Ghadi, S. Saha, S.K. Pandey, and S. Chakrabarti, Mat. Sci. Semicond. Proc. 66, 1 (2017).CrossRefGoogle Scholar
  5. 5.
    J.W. Kang, B.H. Kim, H. Song, Y.R. Jo, and S.H. Hong, Nanoscale 31, 14812 (2018).CrossRefGoogle Scholar
  6. 6.
    T. Ghosh and D. Basak, Nanotechnology 21, 375202 (2010).CrossRefGoogle Scholar
  7. 7.
    R.S. Gonçalves, P. Barrozo, G.L. Brito, B.C. Viana, and F. Cunha, Thin Solid Films 661, 40 (2017).CrossRefGoogle Scholar
  8. 8.
    D. Zhao, M. Wu, R. Qin, and J.S. Yu, Opt. Lett. 43, 3212 (2018).CrossRefGoogle Scholar
  9. 9.
    L. Ning, T.H. Jiang, Z.B. Shao, K. Ding, X.J. Zhang, and J.S. Jie, J. Mater. Chem. C 6, 16617 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Patel, S.H. Park, and J. Kim, Data Brief 17, 520 (2018).CrossRefGoogle Scholar
  11. 11.
    J.H. Park, M.G. Kim, H.M. Jang, Y.M. Kim, and S. Ryu, Appl. Phys. Lett. 84, 1338 (2004).CrossRefGoogle Scholar
  12. 12.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 15 (2009).CrossRefGoogle Scholar
  13. 13.
    A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, and Y.D. Meng, J. Phys. D Appl. Phys. 39, 4762 (2006).CrossRefGoogle Scholar
  14. 14.
    M. Suja, S.B. Bashar, M.M. Morshed, and J. Liu, ACS Appl. Mater. Interfaces 7, 8894 (2015).CrossRefGoogle Scholar
  15. 15.
    C.L. David, B.G. Wang, and D.L. Kevin, Opt. Eng. 56, 034112 (2017).CrossRefGoogle Scholar
  16. 16.
    O. Gürbüz and M. Okutan, Appl. Surf. Sci. 387, 1211 (2016).CrossRefGoogle Scholar
  17. 17.
    Z.N. Kayani, M. Siddiq, S. Riaz, and S. Naseem, Mater. Res. Exp. 4, 096403 (2017).CrossRefGoogle Scholar
  18. 18.
    M. Salem, S. Akir, I. Massoudi, Y. Litaiem, M. Gaidi, and K. Khirouni, Appl. Phys. A 123, 243 (2017).CrossRefGoogle Scholar
  19. 19.
    C.F. Fu, L.F. Han, J.W. Lv, F.M. Wang, T. Sun, and C. Liu, J. Mater. Sci. Mater. Electron. 27, 354 (2016).Google Scholar
  20. 20.
    A. Zawadzka, P. Płóciennik, Y.E. Kouari, H. Bougharraf, and B. Sahraoui, J. Lumin. 169, 483 (2016).CrossRefGoogle Scholar
  21. 21.
    G.E. Hallani, S. Nasih, N. Fazouan, A. Liba, and M. Khuili, J. Appl. Phys. 121, 1 (2017).CrossRefGoogle Scholar
  22. 22.
    M.A. Rahman, M.R. Phillips, and C. Ton-That, J. Alloys Compd. 691, 339 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Kumar, P. Dhiman, and M. Singh, Ceram. Int. 42, 7918 (2016).CrossRefGoogle Scholar
  24. 24.
    G. Yildirim, J. Mater. Sci. Mater. Electron. 23, 928 (2012).CrossRefGoogle Scholar
  25. 25.
    X.L. Zhang, S.Y. Ma, F.C. Yang, Q. Zhao, F.M. Li, and J. Liu, Ceram. Int. 39, 7993 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Lu, L. Long, Z. Zhong, and C. Lan, J. Mater. Sci. Mater. Electron. 27, 2875 (2016).CrossRefGoogle Scholar
  27. 27.
    M.C. Jun and J.H. Koh, Nanoscale Res. Lett. 7, 294 (2012).CrossRefGoogle Scholar
  28. 28.
    S.B. Chen and Z.Y. Zhong, Adv. Mater. Resh 908, 124 (2014).CrossRefGoogle Scholar
  29. 29.
    Y.Y. Liu, Y.L. Zang, G.X. Wei, J. Li, X.L. Fan, and C.F. Cheng, Mater. Lett. 63, 2597 (2009).CrossRefGoogle Scholar
  30. 30.
    R. Hong, J. Shao, H. He, and Z. Fan, Appl. Surf. Sci. 252, 2888 (2006).CrossRefGoogle Scholar
  31. 31.
    Q.G. Lin, Chin. Phys. Lett. 25, 4223 (2008).CrossRefGoogle Scholar
  32. 32.
    B.J. Zheng, J. Supercond. Nov. Magn. 24, 1627 (2011).CrossRefGoogle Scholar
  33. 33.
    Y. Liu, J.H. Yang, Q.F. Guan, L.L. Yang, Y.J. Zhang, Y.X. Wang, B. Feng, J. Cao, X.Y. Liu, Y.T. Tang, and M.B. Wei, J. Alloys Compd. 486, 835 (2009).CrossRefGoogle Scholar
  34. 34.
    M. Mehedi Hassan, W. Khan, P. Mishra, S.S. Islam, and A.H. Naqvi, Mater. Res. Bull. 93, 391 (2017).CrossRefGoogle Scholar
  35. 35.
    H. Czternastek, Vacuum 82, 994 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • L. F. Han
    • 1
  • C. F. Fu
    • 1
    Email author
  • C. Liu
    • 1
  • X. B. Liu
    • 1
  • R. H. Xie
    • 1
  1. 1.School of Electronics ScienceNortheast Petroleum UniversityDaqingChina

Personalised recommendations