Surface Disorder Engineering of Flake-Like Bi2WO6 Crystals for Enhanced Photocatalytic Activity

  • Siyuan Wang
  • Hua YangEmail author
  • Xiangxian Wang
  • Wangjun Feng


The NaBH4 reduction method has been used to engineer the surface of flake-like Bi2WO6 (BWO) crystals with the aim of creating disordered surface structure and enhancing the photocatalytic activity. The disorder-engineered BWO samples were investigated by means of x-ray powder diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, x-ray photoelectron spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, photoluminescence, electrochemical impedance spectroscopy and photocurrent response. Simulated sunlight, UV light and visible light were separately used as the light source to evaluate the photocatalytic activity of the samples toward the degradation of rhodamine B in aqueous solution. It is demonstrated that 0.03 M-BWO treated at 0.03 M NaBH4 solution exhibits the highest photocatalytic activity, ca. 2.4 times higher than pristine BWO under simulated sunlight irradiation. The significant increase in the photocatalytic activity is observed at UV irradiation, which can be explained by the fact that the disordered surface states (formed in the forbidden gap of BWO) can act as electron acceptors to facilitate the separation of photogenerated electron/hole pairs. A slightly enhanced photocatalytic activity is observed under visible light irradiation, which is attributed to the enhanced visible light absorption induced by the disordered surface states. In addition, it is found that the treatment with high NaBH4 concentrations is detrimental to the photocatalytic activity due to the creation of bulk defects in BWO crystals.


Flake-like Bi2WO6 crystals engineered disorder photocatalytic activity photocatalytic mechanism 



This work was supported by the National Natural Science Foundation of China (Grant No. 51662027).


  1. 1.
    H.F. Feng, Z.F. Xu, L. Wang, Y.X. Yu, D. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, W.C. Hao, and S.X. Dou, ACS Appl. Mater. Interfaces 7, 27592 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, and M.H. Isa, J. Ind. Eng. Chem. 26, 1 (2015).CrossRefGoogle Scholar
  3. 3.
    L.J. Di, H. Yang, T. Xian, and X.J. Chen, Micromachines 9, 613 (2018).CrossRefGoogle Scholar
  4. 4.
    Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, and J.B. Su, Mater. Lett. 184, 148 (2016).CrossRefGoogle Scholar
  5. 5.
    C.A. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, and P. Peralta-Zamora, Chemosphere 40, 433 (2000).CrossRefGoogle Scholar
  6. 6.
    N. Liu, X.Y. Chen, J.L. Zhang, and J.W. Schwank, Catal. Today 225, 34 (2014).CrossRefGoogle Scholar
  7. 7.
    S.G. Kumar and K.S.R.K. Rao, Appl. Surf. Sci. 391, 124 (2017).CrossRefGoogle Scholar
  8. 8.
    Y.M. Xia, Z.M. He, Y.L. Lu, B. Tang, S.P. Sun, J.B. Su, and X.P. Li, RSC Adv. 8, 5441 (2018).CrossRefGoogle Scholar
  9. 9.
    Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, and J.L. Jiang, J. Electron. Mater. 47, 3045 (2018).Google Scholar
  10. 10.
    L. Tang, J.J. Wang, G.M. Zeng, Y.N. Liu, Y.C. Deng, Y.Y. Zhou, J. Tang, J.J. Wang, and Z. Guo, J. Hazard. Mater. 306, 295 (2016).CrossRefGoogle Scholar
  11. 11.
    X.X. Zhao, H. Yang, S.H. Li, Z.M. Cui, and C.R. Zhang, Mater. Res. Bull. 107, 180 (2018).CrossRefGoogle Scholar
  12. 12.
    K. Singh, K. Kumar, S. Srivastava, and A. Chowdhury, Ceram. Int. 43, 17041 (2017).CrossRefGoogle Scholar
  13. 13.
    G.Q. Hou, Y.K. Li, W.J. An, S.J. Gao, W.L. Zhang, and W.Q. Cui, Mater. Sci. Semicond. Proc. 63, 261 (2017).CrossRefGoogle Scholar
  14. 14.
    Y.M. Guan, Y.B. Su, J.B. Mu, L. Wang, H.H. Li, X.G. Li, H.W. Che, and Z.C. Guo, J. Mater. Sci. Mater. Electron. 29, 11852 (2018).CrossRefGoogle Scholar
  15. 15.
    X.X. Zhao, H. Yang, H.M. Zhang, Z.M. Cui, W.J. Feng, Desalin. Water. Treat. (2019).
  16. 16.
    D. Ariyanti, L. Mills, J. Dong, Y. Yao, and W. Gao, Mater. Chem. Phys. 199, 571 (2017).CrossRefGoogle Scholar
  17. 17.
    Y.C. Huang, B. Long, H.B. Li, M.S. Balogun, Z.B. Rui, Y.X. Tong, and H.B. Ji, Adv. Mater. Interfaces 2, 1500249 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Tayyebi, T. Soltani, H. Hong, and B.K. Lee, J. Colloid Interface Sci. 514, 565 (2018).CrossRefGoogle Scholar
  19. 19.
    C.T. Zou, Z.Y. Yang, M.J.Y.P. He, Y. Yang, and S.J. Yang, Nano 13, 1850127 (2018).CrossRefGoogle Scholar
  20. 20.
    C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, and X.X. Wang, Nanoscale Res. Lett. 12, 608 (2017).CrossRefGoogle Scholar
  21. 21.
    Y.X. Yan, H. Yang, X.X. Zhao, R.S. Li, and X.X. Wang, Mater. Res. Bull. 105, 286 (2018).CrossRefGoogle Scholar
  22. 22.
    L.X. Lin, J.T. Huang, X.F. Li, M.A. Abass, and S.W. Zhang, Appl. Catal. B Environ. 203, 615 (2017).CrossRefGoogle Scholar
  23. 23.
    J.S. Chen, X. Hua, C.J. Mao, H.L. Niu, and J.M. Song, Res. Chem. Intermed. 44, 2251 (2018).CrossRefGoogle Scholar
  24. 24.
    N.A. Shad, M. Zahoor, K. Bano, S.Z. Bajwa, N. Amin, A. Ihsan, R.A. Soomro, A. Ali, M.I. Arshad, and A.G. Wu, Inorg. Chem. Commun. 86, 213 (2017).CrossRefGoogle Scholar
  25. 25.
    Y.X. Zhou, X.D. Meng, L. Tong, X.H. Zeng, and X.B. Chen, Energies 9, 764 (2016).CrossRefGoogle Scholar
  26. 26.
    Y.J. Liu, R. Cai, T. Fang, J.G. Wu, and A. Wei, Mater. Res. Bull. 66, 96 (2015).CrossRefGoogle Scholar
  27. 27.
    R.P. Panmand, Y.A. Sethi, S.R. Kadam, M.S. Tamboli, L.K. Nikam, J.D. Ambekar, C.J. Park, and B.B. Kale, CrystEngComm 17, 107 (2015).CrossRefGoogle Scholar
  28. 28.
    J.W. Tang, Z.J. Zou, and J.H. Ye, Catal. Lett. 92, 53 (2004).CrossRefGoogle Scholar
  29. 29.
    A. Kudo and S. Hijii, Chem. Lett. 10, 1103 (1999).CrossRefGoogle Scholar
  30. 30.
    S.X. Yu, Y.H. Zhanga, M. Li, X. Du, and H.W. Huang, Appl. Surf. Sci. 391, 491 (2017).CrossRefGoogle Scholar
  31. 31.
    M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, and G.Y. Kido, J. Chem. Phys. 117, 7313 (2002).CrossRefGoogle Scholar
  32. 32.
    H. Li, H.S. Hao, S.S. Jin, W.H. Guo, X.F. Hu, H.M. Hou, G.L. Zhang, S. Yan, W.Y. Gao, and G.S. Liu, Catal. Commun. 97, 60 (2017).CrossRefGoogle Scholar
  33. 33.
    A. Etogo, R. Liu, J.B. Ren, L.W. Qi, C.C. Zheng, J.Q. Ning, Y.J. Zhong, and Y. Hu, J. Mater. Chem. A 4, 13242 (2016).CrossRefGoogle Scholar
  34. 34.
    X.L. Hu, J. Tian, Y.J. Xue, Y.J. Li, and H.Z. Cui, ChemCatChem 9, 1511 (2017).CrossRefGoogle Scholar
  35. 35.
    A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, and T. Thongtem, Mater. Lett. 159, 289 (2015).CrossRefGoogle Scholar
  36. 36.
    C.L. Yu, Y. Bai, J.C. Chen, W.Q. Zhou, H.B. He, J.C. Yu, L.H. Zhu, and S.S. Xue, Sep. Purif. Technol. 154, 115 (2015).CrossRefGoogle Scholar
  37. 37.
    C.X. Zheng and H. Yang, J. Mater. Sci. Mater. Electron. 29, 9291 (2018).CrossRefGoogle Scholar
  38. 38.
    S.J. Li, S.W. Hu, W. Jiang, Y. Liu, J.S. Liu, and Z.H. Wang, J. Colloid. Interface Sci. 501, 156 (2017).CrossRefGoogle Scholar
  39. 39.
    J. Zhang, L.H. Huang, H.Y. Jin, Y.L. Sun, X.M. Ma, E.P. Zhang, H.B. Wang, Z. Kong, and J.H. Xi, Mater. Res. Bull. 85, 140 (2017).CrossRefGoogle Scholar
  40. 40.
    D. Ma, J. Wu, M.C. Gao, Y.J. Xin, T.J. Ma, and Y.Y. Sun, Chem. Eng. J. 290, 136 (2016).CrossRefGoogle Scholar
  41. 41.
    S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, and N. Wetchakun, Catal. Today 278, 280 (2016).CrossRefGoogle Scholar
  42. 42.
    Y.H. Lv, W.Q. Yao, R.L. Zong, and Y.F. Zhu, Sci. Rep. 6, 19347 (2016).CrossRefGoogle Scholar
  43. 43.
    J.Q. Li, Z. Liang, L. Guo, N. Lei, and Q.Q. Song, Mater. Lett. 223, 93 (2018).CrossRefGoogle Scholar
  44. 44.
    L.J. Di, H. Yang, T. Xian, and X.J. Chen, Nanoscale Res. Lett. 13, 257 (2018).CrossRefGoogle Scholar
  45. 45.
    I.K. Konstantinou and T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004).CrossRefGoogle Scholar
  46. 46.
    X.Y. Kong, W.L. Tan, B.J. Ng, S.P. Chai, and A.R. Mohamed, Nano Res. 10, 1720 (2017).CrossRefGoogle Scholar
  47. 47.
    Y.C. Ye, H. Yang, H.M. Zhang, and J.L. Jiang, Environ. Technol. (2018). Scholar
  48. 48.
    K.S.W. Sing and R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004).CrossRefGoogle Scholar
  49. 49.
    X.W. Li, Y.J. Sun, T. Xiong, G.M. Jiang, Y.X. Zhang, Z.B. Wu, and F. Dong, J. Catal. 352, 102 (2017).CrossRefGoogle Scholar
  50. 50.
    X.X. Zhao, H. Yang, R.S. Li, Z.M. Cui, and X.Q. Liu, Environ. Sci. Pollut. Res. Int. (2019). Scholar
  51. 51.
    J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, and H. Liu, Adv. Mater. 25, 5075 (2013).CrossRefGoogle Scholar
  52. 52.
    Z.S. Seddigi, M.A. Gondal, S.G. Rashid, M.A. Abdulaziz, and S.A. Ahmed, J. Mol. Catal. A Chem. 420, 167 (2016).CrossRefGoogle Scholar
  53. 53.
    X. Li, R. Huang, Y. Hu, Y. Chen, W. Liu, R. Yuan, and Z. Li, Inorg. Chem. 51, 6245 (2012).CrossRefGoogle Scholar
  54. 54.
    X.X. Zhao, H. Yang, Z.M. Cui, X.X. Wang, and Z. Yi, Micromachines 10, 66 (2019).CrossRefGoogle Scholar
  55. 55.
    H.Q. Tan, Z. Zhao, W.B. Zhu, E.N. Coker, B.S. Li, M. Zheng, W.X. Yu, H.Y. Fan, and Z.C. Sun, ACS Appl. Mater. Inter. 6, 19184 (2014).CrossRefGoogle Scholar
  56. 56.
    J.L. Li, M. Zhang, Z.J. Guan, Q.Y. Li, C.Q. He, and J.J. Yang, Appl. Catal. B Environ. 206, 300 (2017).CrossRefGoogle Scholar
  57. 57.
    Y.Y. Zhu, Q. Ling, Y.F. Liu, H. Wang, and Y.F. Zhu, Appl. Catal. B Environ. 187, 204 (2016).CrossRefGoogle Scholar
  58. 58.
    Y.C. Ye, H. Yang, X.X. Wang, and W.J. Feng, Mater. Sci. Semicond. Proc. 82, 14 (2018).CrossRefGoogle Scholar
  59. 59.
    Y. Xia, Z. He, W. Yang, B. Tang, Y. Lu, K. Hu, J. Su, and X. Li, Mater. Res. Express 5, 025504 (2018).CrossRefGoogle Scholar
  60. 60.
    F. Wang, H. Yang, H.M. Zhang, and J.L. Jiang, J. Mater. Sci. Mater. Electron. 29, 1304 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina

Personalised recommendations