Journal of Electronic Materials

, Volume 48, Issue 5, pp 2924–2931 | Cite as

Changes of the Physical Properties of Sputtered InGaN Thin Films Under Small Nitrogen Gas Flow Variations

  • Erman ErdoğanEmail author
  • Mutlu Kundakçı


In this research work, InGaN triple compound was grown under low nitrogen gas flows by using the sputtering technique. The structural, optical and morphological characteristics of the InGaN compound have been studied in detail. X-ray diffraction (XRD) and Raman for structural analysis; absorption measurement technique for optical properties; scanning electron microscopy and atomic force microscopy (AFM) measurement techniques were used for the study of the morphological characteristics. In the XRD analysis, the film deposited at 0 sccm gas flow exhibits a (0002) peak of InN, (0002) and (10–11) peaks of GaN. Other films show dendritic structure. In the Raman analysis, the optical phonon modes of the InGaN compound are A1(LO) and E2(high). Optical band gaps are found to be 2.57 eV, 2.54 eV, 3.03 eV and 2.93 eV for 0–0.4–0.8–1.2 sccm, respectively. These changes are ascribed to the degraded crystallinity of the grown films at high nitrogen flow rates. The surface morphology of the InGaN films grown at 0 sccm displays clusters of near-spherical-shaped nanoparticles over the surface. In the results of the AFM, the surface topography of the InGaN thin films deposited with lower nitrogen content exhibited fewer grains on the surface, especially on 0.4 sccm gas flow rate. The number of grains increased with higher N2 gas flow rates. The surface roughness of the films decreased with increasing N2 gas flows. It is clear that surface morphology of the films depends on the gas flow rate very much. Due to their morphological properties, we can say that they are suitable structures for optoelectronic applications and friction applications in engineering. We can also say that films with a hexagonal crystal structure and different optical band gaps can be used in device applications such as LED, laser diode and power electronics.


III-Nitrides thin films sputtering N2 gas flow effect p-type Si substrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are thankful to Dr. Emre Gür (Physics Dept., Atatürk University,) for all deposition and characterization measurements made at DAYTAM. We would like to thank Ahmet Emre Kasapoğlu (DAYTAM) for helping us work on the growth system.


  1. 1.
    H. Morkoç, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, Vol. 1 (New York: Wiley, 2009).Google Scholar
  2. 2.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  3. 3.
    C.F. Huang, W.Y. Hsieh, B.C. Hsieh, C.H. Hsieh, and C.F. Lin, Thin Solid Films 529, 278 (2013).CrossRefGoogle Scholar
  4. 4.
    C.A. Fabien, B.P. Gunning, W.A. Doolittle, A.M. Fischer, Y.O. Wei, H. Xie, and F.A. Ponce, J. Crys. Growth 425, 115 (2015).CrossRefGoogle Scholar
  5. 5.
    I. Gherasoiu, K.M. Yu, L. Reichertz, and W. Walukiewicz, J. Crys. Growth 425, 393 (2015).CrossRefGoogle Scholar
  6. 6.
    Y.S. Chen, C.H. Liao, C.T. Kuo, R.C.C. Tsiang, and H.C. Wang, Nanoscale Res. Lett. 9, 334 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Kadys, T. Malinauskas, T. Grinys, M. Dmukauskas, J. Mickevičius, J. Aleknavičius, R. Tomašiūnas, A. Selskis, R. Kondrotas, S. Stanionytė, H. Lugauer, and M. Strassburg, J. Electron. Mater. 44, 188 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Jakkala and M.E. Kordesch, Mater. Res. Exp. 3, 106406 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Itoh, S. Hibino, T. Sahashi, Y. Kato, S. Koiso, F. Ohashi, and S. Nonomura, J. Non-Crys. Solids 358, 2362 (2012).CrossRefGoogle Scholar
  10. 10.
    C.C. Li, D.H. Kuo, P.W. Hsieh, and Y.S. Huang, J. Electron. Mater. 42, 2445 (2013).CrossRefGoogle Scholar
  11. 11.
    Q. Guo, Y. Kusunoki, Y. Ding, T. Tanaka, and M. Nishio, Jpn. J. Appl. Phys. 49, 081203 (2010).CrossRefGoogle Scholar
  12. 12.
    B.S. Yadav, P. Mohanta, R.S. Srinivasa, and S.S. Major, Thin Solid Films 555, 179 (2014).CrossRefGoogle Scholar
  13. 13.
    P.J. Kelly and R.D. Arnell, Vacuum 56, 159 (2000).CrossRefGoogle Scholar
  14. 14.
    S. Swann, Phys. Tech. 19, 67 (1988).CrossRefGoogle Scholar
  15. 15.
    S. Komiyama, Y. Sutou, K. Oikawa, J. Koike, M. Wang, and M. Sakurai, Tribol. Inter. 87, 32 (2015).CrossRefGoogle Scholar
  16. 16.
    H.S. Medeiros, R.S. Pessoa, J.C. Sagás, M.A. Fraga, L.V. Santos, H.S. Maciel, and M.M. da Costa, Surf. Coat. Tech. 206, 1787 (2011).CrossRefGoogle Scholar
  17. 17.
    T. Wang, G. Zhang, S. Ren, and B. Jiang, J. Alloy. Comp. 701, 1 (2017).CrossRefGoogle Scholar
  18. 18.
    Y. Ogawa, D. Ando, Y. Sutou, and J. Koike, Mater. Trans. 55, 1606 (2014).CrossRefGoogle Scholar
  19. 19.
    N. Haberkorn, S. Bengio, S. Suárez, P.D. Pérez, M. Sirena, and J. Guimpel, Mater. Lett. 215, 15 (2018).CrossRefGoogle Scholar
  20. 20.
    C. Wang, X. Luo, S. Zhang, Q. Shen, and L. Zhang, Vacuum 103, 68 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Jafarzadeh, K. Khojier, and H. Savaloni, Adv. Mater. Res. 829, 497 (2014).CrossRefGoogle Scholar
  22. 22.
    R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S.R. Hosseini, and M. Jafari, J. Korean Phys. Soc. 66, 978 (2015).CrossRefGoogle Scholar
  23. 23.
    C. He, L. Xie, Y. Zhu, R. Li, G. Ma, and J. Wang, MATEC Web Conf. 67, 04015 (2016).CrossRefGoogle Scholar
  24. 24.
    S.Y. Kuo, K.C. Liu, F.I. Lai, J.F. Yang, W.C. Chen, M.Y. Hsieh, H.I. Lin, and W.T. Lin, Microelectron. Rel. 50, 730 (2010).CrossRefGoogle Scholar
  25. 25.
    M. Leszczynski, R. Czernecki, S. Krukowski, M. Krysko, G. Targowski, P. Prystawko, J. Plesiewicz, P. Perlin, and T. Suski, J. Crys. Growth 318, 496 (2011).CrossRefGoogle Scholar
  26. 26.
    N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, and C. Honsberg, Appl. Phys. Lett. 95, 051915 (2009).CrossRefGoogle Scholar
  27. 27.
    C. Honsberg, O. Jani, A. Doolittle, E. Trybus, G. Namkoong, I. Ferguson, D. Nicole, and A. Payne, in Proceedings of the 19th European Photovoltaic Science and Engineering Conference Paris France 15 (2004, June)Google Scholar
  28. 28.
    Y. Yao, T. Sekiguchi, T. Ohgaki, Y. Adachi, and N. Ohashi, J. Ceramic Soc. Jpn. 118, 152 (2010).CrossRefGoogle Scholar
  29. 29.
    H. Yang, J. Li, R. Jia, L. Yang, and L. Li, RSC Adv. 6, 43874 (2016).CrossRefGoogle Scholar
  30. 30.
    S. Peng, Y. Yang, G. Li, J. Jiang, K. Jin, T.T. Yao, K. Zhang, X. Cao, Y. Wang, and G. Xu, J. Alloy. Comp. 678, 355 (2016).CrossRefGoogle Scholar
  31. 31.
    Z.G. Qian, W.Z. Shen, H. Ogawa, and Q.X. Guo, J. Phys. Cond. Matter 16, 381 (2004).CrossRefGoogle Scholar
  32. 32.
    X. Wang, L. He, X. Li, X. Su, Z. Zhang, and W. Zhao, MATEC Web Conf. 67, 04013 (2016).CrossRefGoogle Scholar
  33. 33.
    B. Rajamannan, S. Mugundan, G. Viruthagiri, P. Praveen, and N. Shanmugam, Spectro. Acta Part A: Mol. Biomol. Spect. 118, 651 (2014)Google Scholar
  34. 34.
    A. Shah and A. Mahmood, Phys. B: Cond. Matter 407, 3987 (2012).CrossRefGoogle Scholar
  35. 35.
    J. Wang, X.J. Shi, and J. Zhu, Appl. Surf. Sci. 265, 399 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Subramanian, K. Prabakaran, and M. Jayachandran, Bull. Mater. Sci. 35, 505 (2012).CrossRefGoogle Scholar
  37. 37.
    A. Kavitha, R. Kannan, K.R. Gunasekhar, and S. Rajashabala, J. Electron. Mater. 46, 5773 (2017).CrossRefGoogle Scholar
  38. 38.
    S.H. Abud, Z. Hassan, and F.K. Yam, Int. J. Nanoelectron. Mater. 8, 33 (2015)Google Scholar
  39. 39.
    K. Kolanek, M. Tallarida, K. Karavaev, and D. Schmeisser, Thin Solid Films 518, 4688 (2010).CrossRefGoogle Scholar
  40. 40.
    N. Tayebi and A.A. Polycarpou, Tribol. Inter. 37, 491 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical & Electronics EngineeringMuş Alparslan UniversityMuşTurkey
  2. 2.Department of PhysicsAtatürk UniversityErzurumTurkey

Personalised recommendations