Advertisement

Development of Porous Manganese Oxide/Polyaniline Composite Using Electrochemical Route for Electrochemical Supercapacitor

  • B. P. Relekar
  • A. V. Fulari
  • G. M. Lohar
  • V. J. FulariEmail author
Article

Abstract

Manganese oxide (MnO2)/polyaniline composite thin films were deposited using the electrochemical route for the fabrication of supercapacitor devices. The MnO2 polyaniline composite was prepared with different percentages of MnO2 and polyaniline and its structural, morphological, electrochemical, wettability and supercapacitor properties have been studied. The effects of the different percentages of MnO2 and polyaniline on the supercapacitor have been investigated. The thin film containing 80% polyaniline and 20% MnO2 shows relatively better supercapacitance, i.e., 409 F/g as compared to other composite thin films. The same film shows the retention of 92% of its original specific capacitance value after 1000 cycles. Similarly, after 2000 cycles, this value is still 84%.

Keywords

MnO2/polyaniline composite supercapacitance electrochemical route 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors are grateful to the DST India for providing instrumental facilities at Department of Physics, Shivaji University, Kolhapur (M.S.), India.

References

  1. 1.
    T.M. McEvoy and K.J. Stevenson, Langmuir 19, 4316 (2003).Google Scholar
  2. 2.
    A. Xie, F. Tao, C. Jiang, W. Sun, Y. Li, L. Hu, X. Du, S. Luo, and C. Yao, J. Electroanal. Chem. 789, 29 (2017).Google Scholar
  3. 3.
    N. Wang, P. Zhao, K. Liang, M. Yao, Y. Yang, and W. Hu, Chem. Eng. J. 307, 105 (2016).Google Scholar
  4. 4.
    Q. Lu, J.G. Chen, and J.Q. Xiao, Angew. Chem. Int. Edit. 52, 1882 (2013).Google Scholar
  5. 5.
    A.H. Gemeay, Eur. Polym. J. 41, 2575 (2005).Google Scholar
  6. 6.
    B.G. Choi, et al., ACS Nano 7, 2453 (2013).Google Scholar
  7. 7.
    T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Nat. Mater. 9, 146 (2010).Google Scholar
  8. 8.
    L. Chen, L.J. Sun, F. Luan, Y. Liang, Y. Li, and X.-X. Liu, J. Power Sources 195, 3742 (2010).Google Scholar
  9. 9.
    M. Yang, S.B. Hong, and B.G. Choi, Phys. Chem. Chem. Phys. 17, 29874 (2015).Google Scholar
  10. 10.
    H. Jiang, J. Ma, and C. Li, J. Mater. Chem. 22, 16939 (2012).Google Scholar
  11. 11.
    A.V. Fulari, M.V. Ramana Reddy, S.T. Jadhav, G.S. Ghodake, D.Y. Kim, and G.M. Lohar, J. Mater. Sci. Mater. El 29, 10814 (2018).Google Scholar
  12. 12.
    G.M. Lohar, S.T. Jadhav, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, and V.J. Fulari, J. Colloid Interface Sci. 458, 136 (2015).Google Scholar
  13. 13.
    G.M. Lohar, H.D. Dhaygude, B.P. Relekar, M.C. Rath, and V.J. Fulari, Ionics 22, 1451 (2016).Google Scholar
  14. 14.
    G.M. Lohar, S.T. Jadhav, H.D. Dhaygude, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, and V.J. Fulari, J. Alloy Compd. 653, 22 (2015).Google Scholar
  15. 15.
    D. Zhou, B. Che, and X. Lu, J. Mater. Chem. C 5, 1758 (2017).Google Scholar
  16. 16.
    G.M. do Nascimento and M.L.A. Temperini, J. Raman Spectrosc. 39, 772 (2008).Google Scholar
  17. 17.
    J.E. Pereira da Silva, M.L.A. Temperini, and S.I. Cordoba de Torresi, J. Braz. Chem. Soc. 16, 322 (2005).Google Scholar
  18. 18.
    R. Jamal, M. Wang, Q. Zhao, and T. Abdiryim, Prog. Nat. Sci. Mater. 26, 32 (2016).Google Scholar
  19. 19.
    E.C. Gomes and M.A.S. Oliveira, Am. J. Polym. Sci. 2, 5 (2012).Google Scholar
  20. 20.
    H. Xia, Y. Wang, J. Lin, and L. Lu, Nanoscale Res. Lett. 7, 1 (2012).Google Scholar
  21. 21.
    Z. Hu, L. Zu, Y. Jiang, H. Lian, Y. Liu, Z. Li, F. Chen, X. Wang, and X. Cui, Polymers 7, 1939 (2015).Google Scholar
  22. 22.
    B.P. Relekar, S.A. Mahadik, S.T. Jadhav, A.S. Patil, R.R. Koli, G.M. Lohar, and V.J. Fulari, J. Electron. Mater. 47, 2731 (2018).Google Scholar
  23. 23.
    H.A. Gemeay, I.A. Mansour, R.G. El-Sharkawy, and A.B. Zaki, Eur. Polym. J. 41, 2575 (2005).Google Scholar
  24. 24.
    Z. Fan, J. Yan, T. Wei, L. Zhi, G.Q. Ning, T.Y. Li, and F. Wei, Adv. Funct. Mater. 21, 2366 (2011).Google Scholar
  25. 25.
    B.P. Relekar, G.M. Lohar, P.S. Indapure, S.T. Punde, S.T. Jadhav, H.D. Dhygude, and V.J. Fulari, Mater. Focus 5, 577 (2016).Google Scholar
  26. 26.
    H. Cao, Z. Xu, D. Sheng, J. Hong, H. Sang, and Y. Dub, J. Mater. Chem. 11, 958 (2001).Google Scholar
  27. 27.
    L. Huang, Z. Wang, H. Wang, X. Cheng, A. Mitra, and Y. Yan, J. Mater. Chem. 12, 388 (2002).Google Scholar
  28. 28.
    N. Chiou, L.J. Lee, and A.J. Epstein, J. Mater. Chem. 18, 2085 (2008).Google Scholar
  29. 29.
    D.S. Patil, J.S. Shaikh, S.A. Pawar, R.S. Devan, Y.R. Ma, A.V. Moholkar, J.H. Kim, R.S. Kalubarme, C.J. Park, and P.S. Patil, Phys. Chem. Chem. Phys. 14, 11886 (2012).Google Scholar
  30. 30.
    Y. Hsu, Y. Chen, Y. Lin, L. Chen, and K. Chen, Chem. Commun. 47, 1252 (2011).Google Scholar
  31. 31.
    S.A. Mahadik, F.D. Pedraza, B.P. Relekar, V.G. Parale, G.M. Lohar, and S.S. Thorat, J. Sol Gel Sci. Technol. 78, 475 (2016).Google Scholar
  32. 32.
    G.M. Lohar, S.K. Shinde, and V.J. Fulari, J. Semicond. 35, 11301 (2014).Google Scholar
  33. 33.
    C. Reece, E. Barsoukov, and J.R. Macdonald, eds., An Introduction to Electrochemical Impedance Spectroscopy (EIS) (Hoboken: Wiley, 2005).Google Scholar
  34. 34.
    L. Wang, J. Zhao, X. He, J. Gao, J. Li, C. Wan, and C. Jiang, Int. J. Electrochem. Sci. 7, 345 (2012).Google Scholar
  35. 35.
    F. Meng, X. Yan, Y. Zhu, and P. Si, Nanoscale Res. Lett. 8, 179 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • B. P. Relekar
    • 1
    • 2
  • A. V. Fulari
    • 2
  • G. M. Lohar
    • 3
  • V. J. Fulari
    • 2
    Email author
  1. 1.Yashwantrao Chavan College of ScienceKaradIndia
  2. 2.Holography and Materials Research Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Lal Bahadur Shastri College of Arts Science and CommerceSataraIndia

Personalised recommendations