Advertisement

Influence of Molecular Beam Epitaxy (MBE) Parameters on Catalyst-Free Growth of InAs Nanowires on Silicon (111) Substrate

  • Suresh K. Jangir
  • Hitendra K. Malik
  • Anand Kumar
  • D. V. Sridhar Rao
  • R. Muralidharan
  • Puspashree MishraEmail author
Article

Abstract

The effect of molecular beam epitaxy parameters on catalyst-free growth of InAs nanowires using oxide templates on Si (111) substrate has been studied. Two different approaches, i.e., thermal and plasma-enhanced chemical vapor deposition, were used to prepare the oxide templates. The length, diameter, density, and quality of the nanowires depended strongly on the substrate temperature, As/In beam equivalent pressure ratio, and growth rate, whereas the type, thickness, and uniformity of the oxide were found to affect only the density of the nanowires. Nanowires could be grown effectively in only a very narrow range of these growth parameters. The surface morphological, structural, and optical properties of the nanowires were assessed using various techniques including field-emission scanning electron microscopy, high-resolution x-ray diffraction analysis, transmission electron microscopy, and Raman spectroscopy.

Keywords

Molecular beam epitaxy nanowires catalyst-free InAs electron microscopy high-resolution x-ray diffraction Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

We would like to thank the Director, SSPL for his encouragement and permission to publish this work.

References

  1. 1.
    K. Tomioka, M. Yoshimura, and T. Fukui, Nature 488, 189 (2012).CrossRefGoogle Scholar
  2. 2.
    Q. Gao, H.H. Tan, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, J. Zou, and C. Jagadish, Semicond. Sci. Technol. 26, 014035 (2011).CrossRefGoogle Scholar
  3. 3.
    H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, J. Zou, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, P. Parkinson, and M.B. Johnston, Prog. Quantum Electron. 35, 23 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Caroff, J. Bolinsson, and J. Johansson, IEEE J. Sel. Top. Quantum Electron. 17, 829 (2011).CrossRefGoogle Scholar
  5. 5.
    X. Zhou, S.A. Dayeh, D. Aplin, D. Wang, and E.T. Yu, Appl. Phys. Lett. 89, 053113 (2006).CrossRefGoogle Scholar
  6. 6.
    M.H. Sun, E.S.P. Leong, A.H. Chin, C.Z. Ning, G.E. Cirlin, Y.B. Samsonenko, V.G. Dubrovskii, L. Chuang, and C.C. Hasnain, Nanotechnology 21, 335705 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Chuang, Q. Gao, R. Kapadia, A.C. Ford, J. Guo, and A. Javey, Nano Lett. 13, 555 (2013).CrossRefGoogle Scholar
  8. 8.
    K.W. Schwartz and J. Tersoff, Nano Lett. 11, 316 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Johansson, L.S. Karlsson, C.P.T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, Nat. Mater. 5, 574 (2006).CrossRefGoogle Scholar
  10. 10.
    A.L. Roest, M.A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, and E.P.A.M. Bakkers, Nanotechnology 17, S271 (2006).CrossRefGoogle Scholar
  11. 11.
    S.A. Fortuna and X. Li, Semicond. Sci. Technol. 25, 024005 (2010).CrossRefGoogle Scholar
  12. 12.
    A.C. Ford, J.C. Ho, Z. Fan, O. Ergen, V. Altoe, S. Aloni, H. Razavi, and A. Javey, Nano Res. 1, 32 (2008).CrossRefGoogle Scholar
  13. 13.
    L. Gao, R.L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M.K. Hudait, D.L. Huffaker, M.S. Goorsky, S. Kodambaka, and R.F. Hicks, Nano Lett. 9, 2223 (2009).CrossRefGoogle Scholar
  14. 14.
    G.E. Cirlin, V.G. Dubrovskii, Y.B. Samsonenko, A.D. Bouravleuv, K. Durose, Y.Y. Proskuryakov, B. Mendes, L. Bowen, M.A. Kaliteevski, R.A. Abram, and D. Zeze, Phys. Rev. B 82, 035302 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Hertenberger, D. Rudolph, S. Bolte, M. Döblinger, M. Bichler, D. Spirkoska, J.J. Finley, G. Abstreiter, and G. Koblmüller, Appl. Phys. Lett. 98, 123114 (2011).CrossRefGoogle Scholar
  16. 16.
    R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Oxide Adv. Mater. 15, 635 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. Jing, X. Bao, W. Wei, C. Li, K. Sun, D.P.R. Aplin, Y. Ding, Z.L. Wang, Y. Bando, and D. Wang, J. Phys. Chem. C 118, 1696 (2014).CrossRefGoogle Scholar
  18. 18.
    B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L.S. Karlsson, G. Bauer, L. Samuelson, and W. Seifert, Nano Lett. 6, 1817 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, IEEE J. Sel. Top. Quantum Electron. 7, 1112 (2011).CrossRefGoogle Scholar
  20. 20.
    H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, J. Cryst. Growth 310, 5093 (2008).CrossRefGoogle Scholar
  21. 21.
    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A.F. i Morral, Phys. Rev. B 77, 155326 (2008).CrossRefGoogle Scholar
  22. 22.
    D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. Spirkoska, M. Döblinger, M. Bichler, J.J. Finley, G. Abstreiter, and G. Koblmüller, Nano Lett. 11, 3848 (2011).CrossRefGoogle Scholar
  23. 23.
    J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Hertenberger, D. Rudolph, J. Becker, M. Bichler, J.J. Finley, G. Abstreiter, and G. Koblmüller, Nanotechnology 23, 235602 (2012).CrossRefGoogle Scholar
  25. 25.
    G. Koblmüller, S. Hertenberger, K. Vizbaras, M. Bichler, F. Bao, J.-P. Zhang, and G. Abstreiter, Nanotechnology 21, 365602 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley, G. Abstreiter, and G. Koblmüller, J. Appl. Phys. 108, 114316 (2010).CrossRefGoogle Scholar
  27. 27.
    D.W. Park, S.G. Jeon, C.-R. Lee, S.J. Lee, J.Y. Song, J.O. Kim, S.K. Noh, J.Y. Leem, and J.S. Kim, Sci. Rep. 5, 16652 (2015).CrossRefGoogle Scholar
  28. 28.
    E. Dimakis, M. Ramsteiner, C.-N. Huang, A. Trampert, A. Davydok, A. Biermanns, U. Pietsch, H. Riechert, and L. Geelhaar, Appl. Phys. Lett. 103, 143121 (2013).CrossRefGoogle Scholar
  29. 29.
    U.P. Gomes, D. Ercolani, N.V. Sibirev, M. Gemmi, V.G. Dubrovskii, F. Beltram, and L. Sorba, Nanotechnology 26, 415604 (2015).CrossRefGoogle Scholar
  30. 30.
    H. Wang, W. Wei, J. Wang, Q. Feng, S. Wu, H. Yang, X. Xu, T. Wang, and J. Zhang, J. Cryst. Growth 498, 209 (2018).CrossRefGoogle Scholar
  31. 31.
    M.T. Soo, K. Zheng, Q. Gao, H.H. Tan, C. Jagadish, and J. Zou, Nano Lett. 16, 4189 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Yao, A.J.A. Woollam, and S.A. Alterovitz, Appl. Phys. Lett. 62, 3324 (1993).CrossRefGoogle Scholar
  33. 33.
    J.H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 6, 1436 (2009).CrossRefGoogle Scholar
  34. 34.
    F. Martelli, S. Rubini, F. Jabeen, L. Felisari, and V. Grillo, J. Cryst. Growth 323, 297 (2011).CrossRefGoogle Scholar
  35. 35.
    S.K. Jangir, H.K. Malik, S. Dalal, A. Pandey, T. Srinivasan, K. Muraleedharan, R. Muralidharan, and P. Mishra, Mater. Sci. Eng., B 225, 108 (2017).CrossRefGoogle Scholar
  36. 36.
    P. Mishra and K.P. Jain, Phys. Rev. B 64, 073304 (2001).CrossRefGoogle Scholar
  37. 37.
    P. Mishra and K.P. Jain, Phys. Rev. B 62, 14790 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Solid State Physics LaboratoryTimarpur, DelhiIndia
  2. 2.Department of PhysicsIndian Institute of Technology, DelhiNew DelhiIndia
  3. 3.Defence Metallurgical Research LaboratoryHyderabadIndia
  4. 4.Center for Nanoscience and EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations