Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3036–3042 | Cite as

Lift-Off Mechanism of GaN Thin Films with Buried Nanocavities Investigated by SEM and TEM

  • Xiaokun Yang
  • Qingxue Gao
  • Dezhong Cao
  • Hongzhi Mao
  • Chongchong Zhao
  • Caina Luan
  • Jianqiang Liu
  • Jin Ma
  • Hongdi XiaoEmail author
Article
  • 19 Downloads

Abstract

A process to slice and separate GaN layers with buried nanocavities was presented via an annealing process of nanoporous GaN (0002) thin films at 1050°C in an NH3 ambient. We were able to separate and lift off GaN layers over a macroscopic area (\( \ge \) cm2). The several growth stages of buried nanocavities were examined by scanning/transmission emission microscopy techniques. During the early stage of annealing, the annealing leads to variations in morphology from nanopores with rough sidewalls to columnar or hexagonal nanopores with smooth sidewalls. At the same time, amorphous gallium oxide and single crystal GaN with high dislocation density, which are formed by electrochemical etching, are converted into GaN with a perfect crystal lattice. Subsequently, the columnar or hexagonal nanopores are sealed, cut, and then spheroidized. Above a sufficiently high porosity (> 50%), the nanocavities will overlap one another and coalesce, allowing a stand-alone GaN thin film to be lifted off the original substrate.

Keywords

Electrochemical etching annealing nanoporous GaN HRTEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the Key Research and Development Plan of Shandong Province, China (2018GGX102024, 2018GGX102014) and the National Natural Science Foundation of China (61376069, 51372141).

References

  1. 1.
    A. Najar, M. Gerland, and M. Jouiad, J. Appl. Phys. 111, 093513 (2012).CrossRefGoogle Scholar
  2. 2.
    S.F. Cheah, S.C. Lee, S.S. Ng, F.K. Yam, H.A. Hassan, and Z. Hassan, Appl. Phys. Lett. 102, 101601 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Chen, H. Xiao, and J. Han, J. Appl. Phys. 112, 064303 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).CrossRefGoogle Scholar
  5. 5.
    T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science 285, 1905 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Chaudhuri, C. Ignatiev, S. Stepanov, D. Tsvetkov, A. Cherenkov, and V. Dmitriev, Mater. Sci. Eng., B 78, 22 (2000).CrossRefGoogle Scholar
  7. 7.
    H. Hartono, C.B. Soh, S.Y. Chow, S.J. Chua, and E.A. Fitzgerald, Appl. Phys. Lett. 90, 61 (2007).CrossRefGoogle Scholar
  8. 8.
    B. Wang, Z.D. Zhao, W. Xu, Y.P. Sui, and G.H. Yu, Mater. Sci. Semicond. Process. 27, 541 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, B. Leung, and J. Han, Appl. Phys. Lett. 100, 181908 (2012).CrossRefGoogle Scholar
  10. 10.
    J.H. Kang, M. Ebaid, J.K. Lee, T. Jeong, and S.W. Ryu, ACS Appl. Mater. Interfaces 6, 8683 (2014).CrossRefGoogle Scholar
  11. 11.
    L.W. Jang, D. Jeon, T. Chuang, A. Polyakov, I.H. Lee, and A.C.S. Appl, Mater. Interfaces 6, 985 (2014).CrossRefGoogle Scholar
  12. 12.
    C.D. Yerino, Y. Zhang, B. Leung, M.L. Lee, T.C. Hsu, C.K. Wang, W.C. Peng, and J. Han, Appl. Phys. Lett. 98, 251910 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Sudoh, H. Iwasaki, R. Hiruta, H. Kuribayashi, and R. Shimizu, J. Appl. Phys. 105, 083536 (2009).CrossRefGoogle Scholar
  14. 14.
    R.J. Martin-Palma, L. Pascual, A. Landa, P. Herrero, and J.M. Martinez-Duart, Appl. Phys. Lett. 85, 2517 (2004).CrossRefGoogle Scholar
  15. 15.
    M.Y. Ghannam, Y.A. Raheem, A.A. Alomar, and J. Poortmans, Phys. Status Solidi (c) 209, 2194 (2012).CrossRefGoogle Scholar
  16. 16.
    M.Y. Ghannam, A.S. Alomar, J. Poortmans, and R.P. Mertens, J. Appl. Phys. 108, 074902 (2010).CrossRefGoogle Scholar
  17. 17.
    Q. Gao, R. Liu, H. Xiao, D. Cao, J. Liu, and J. Ma, Appl. Surf. Sci. 387, 4061 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Q. Sun, B. Leung, J. Simon, M.L. Lee, and J. Han, Nanotechnololgy 22, 045603 (2011).CrossRefGoogle Scholar
  19. 19.
    S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, and I.S.T. Tsong, Appl. Phys. Lett. 74, 356 (1999).CrossRefGoogle Scholar
  20. 20.
    D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60, 247 (1986).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of MicroelectronicsShandong UniversityJinanChina
  2. 2.School of PhysicsShandong UniversityJinanChina
  3. 3.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations