Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2916–2923 | Cite as

PZT Based Piezoelectric Sensor for Structural Monitoring

  • Bo ChenEmail author
  • Huimin Li
  • Wei Tian
  • Chonggang Zhou
Article
  • 80 Downloads

Abstract

Previous research experience shows that the PZT piezoelectric ceramics have good sensing effect, and it can be used for structural health monitoring of civil structures. Most of the studies focus on the change of signal results in the process of monitoring, but less on the selection of PZT materials. Based on the discussion of the relationship between material properties and structural vibration frequency, the phase structure, morphology, impedance characteristics and temperature characteristics of PZT-5H were determined by experiments using PZT-5H as the object of study. The results show that PZT-5H piezoelectric material has excellent piezoelectric properties, is not easy to damage, has high piezoelectric frequency and good temperature stability. Therefore, it has a good potential to be applied to microdamage monitoring of civil engineering structures.

Keywords

Sensor PZT-5H structural health monitoring impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Nos. 51478384/51678479/51808424).

References

  1. 1.
    R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schönau, and H. Fuess, J. Appl. Phys. 102, 237 (2007).Google Scholar
  2. 2.
    A. Tyagi, K.M. Tripathi, and R.K. Gupta, J. Mater. Chem. A 3, 22507 (2015).CrossRefGoogle Scholar
  3. 3.
    Prateek, V.K. Thakur, and R.K. Gupta, Obes. Surg. 116, 4260 (2016).Google Scholar
  4. 4.
    M.C. Scutaru, N. Ţăranu, C.C. Comisu, and D. Ungureanu, Bul. Inst. Polit. Iasi. 63, 67 (2017).Google Scholar
  5. 5.
    S. Bhalla and S. Moharana, Int. J. Solids Struct. 51, 1299 (2014).CrossRefGoogle Scholar
  6. 6.
    V. Talakokula and S. Bhalla, J. Intell. Mater. Syst. Struct. 26, 2304 (2015).CrossRefGoogle Scholar
  7. 7.
    C.G. Karayannis, M.E. Voutetaki, C.E. Chalioris, C.P. Providakis, and G.M. Angeli, Smart Struct. Syst. 15, 997 (2015).CrossRefGoogle Scholar
  8. 8.
    V. Talakokula, S. Bhalla, R.J. Ball, C.R. Bowen, G.L. Pesce, R. Kurchania, B. Bhattacharjee, A. Gupta, and K. Paine, Sens. Actuators A Phys. 242, 79 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Zhang and F. Yu, J. Am. Ceram. Soc. 94, 10 (2011).Google Scholar
  10. 10.
    R. Vaish, Int. J. Appl. Ceram. Technol. 10, 682 (2013).CrossRefGoogle Scholar
  11. 11.
    I.V. Lisnevskaya, T. Lupeiko, and K. Myagkaya, J. Compos. Mater. 51, 4 (2016).Google Scholar
  12. 12.
    G. Park, H.H. Cudney, and D.J. Inman, Earthq. Eng. Struct. Dyn. 30, 10 (2010).Google Scholar
  13. 13.
    C.E. Chaliorisa, C.G. Karayannisa, and G.M. Angelia, Case Stud. Constr. Mater. 5, 2 (2016).Google Scholar
  14. 14.
    IEEE Standards Board, Am. Natl. Stand. IEEE Stand. Piezoelectr. 10, 176 (1987).Google Scholar
  15. 15.
    C. Liang, F.P. Sun, and C.A. Rogers, J. Intell. Mater. Syst. Struct. 5, 12 (1994).CrossRefGoogle Scholar
  16. 16.
    C.P. Providakis, C.G. Karayannis, C.E. Chalioris, M.J. Favvata, G.M. Angeli, and N.A. Papadopoulos, Sch. J. Eng. Technol. 3, 80 (2015).Google Scholar
  17. 17.
    S.S. Heganna and J.J. Joglekar, Procedia Comput. Sci. 89, 710 (2016).CrossRefGoogle Scholar
  18. 18.
    V. Talakokula, S. Bhalla, and A. Gupta, Mech. Syst. Signal Process. 99, 129 (2018).CrossRefGoogle Scholar
  19. 19.
    D. Ai, H. Luo, C. Wang, and H.P. Zhu, Eng. Struct. 154, 38 (2018).CrossRefGoogle Scholar
  20. 20.
    M. Haq, S. Bhalla, and T. Naqvi, Procedia Eng. 173, 1223 (2017).CrossRefGoogle Scholar
  21. 21.
    M.E. Voutetaki, N.A. Papadopoulos, G.M. Angeli, and C.P. Providakis, Eng. Struct. 114, 226 (2016).CrossRefGoogle Scholar
  22. 22.
    N. Kaur, L.F. Li, S. Bhalla, Y. Xia, P. Ni, and S. Adhikari, J. Intell. Mater. Syst. Struct. 19, 2717 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Narayanan and K.V.L. Subramaniam, Constr. Build. Mater. 105, 536 (2016).CrossRefGoogle Scholar
  24. 24.
    C.E. Chalioris, N.A. Papadopoulos, G.M. Angeli, C.G. Karayannis, A.A. Liolios, and C.P. Providakis, Open Eng. 5, 373 (2015).CrossRefGoogle Scholar
  25. 25.
    C.G. Karayannis, C.E. Chalioris, G.M. Angeli, N.A. Papadopoulos, M.J. Favvata, and C.P. Providakis, Constr. Build. Mater. 105, 227 (2016).CrossRefGoogle Scholar
  26. 26.
    Y.Y. Lim, W.Y.H. Liew, and C.K. Soh, Mech. Adv. Mater. Struct. 22, 877 (2015).CrossRefGoogle Scholar
  27. 27.
    Dongfang Jinrong Ultrasonic Electrical Appliance Co., Ltd. http://www.siansonic.com/.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Civil EngineeringXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations