Electrochemical Study of Li-Ion 18650 Cylindrical Rechargeable Cell at Elevated Temperature Using Geminal Dicationic Ionic Liquid as Electrolyte Additive

  • Pejman SalimiEmail author
  • Elaheh Kowsari


Because of desirable features, dicationic ionic liquids (DILs) are considered as suitable for applications as the electrolyte in safe Li-ion batteries (LIBs). A germinal (symmetrical) DIL (GDIL) namely 3-methyl-1-[2-(2-{2-[2-[(3-methyl-1-H-imidazol-3-ium-1-yl)ethoxy]ethoxy}-ethoxy)ethyl]-1-H-imidazol-3-ium dihexafluorophosphate is successfully synthesized. The structure and purity of the prepared GDIL are confirmed by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, Karl-Fisher technique and elemental analysis. In order to investigate the role of the GDIL as electrolyte additive on the electrochemical performance of a Li-ion 18650 cylindrical rechargeable cell, the charge and discharge, and electrochemical impedance spectroscopy methods were used at 55°C and compared with the electrochemical performance of the cell containing 1-butyl-3-methylimidazolium hexafluorophosphate monocationic ionic liquid (MIL). After being continuously charged and discharged at different C-rates, the cell containing 10% V/V GDIL as electrolyte additive indicated the better electrochemical performance compared to that of the cell with 10% V/V MIL due to the higher thermal stability and some specific properties of the GDIL. In addition, after 500 charge–discharge cycles, the cell with GDIL showed 46% capacity fade in comparison of 71% capacity fade of the commercial 18650 LIBs at 55°C and 1 C-rate. Results obtained indicate promising characteristics of the GDIL, such as improved thermal characteristics of organic solvent and stabilization of solid electrolyte interface layer on electrode's surface, being suitable candidates to be used in LIBs.


Ionic liquid electrolyte monocationic geminal dicationic Li-ion batteries elevated temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Z. Wang, Y. Cai, Z. Wang, S. Chen, X. Lu, and S. Zhang, J. Solid State Electrochem. 17, 2839 (2013).CrossRefGoogle Scholar
  2. 2.
    D. Chen, F. Luo, L. Gao, W. Zhou, and D. Zhu, J. Electron. Mater. 46, 6367 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Moreno, E. Simonetti, G.B. Appetecchi, M. Carewska, M. Montanino, G. Kim, N. Loeffler, and S. Passerini, J. Electrochem. Soc. 164, 6026 (2017).CrossRefGoogle Scholar
  4. 4.
    N. Plylahan, M. Kerner, D.H. Lim, A. Matic, and P. Johansson, Electrochim. Acta 216, 24 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Liu, L. Zhu, E. Han, and H. Xu, J. Electron. Mater. 47, 5118 (2018).CrossRefGoogle Scholar
  6. 6.
    S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao, and J. Wang, Chem. Soc. Rev. 43, 7838 (2014).CrossRefGoogle Scholar
  7. 7.
    K. Xu, Chem. Rev. 114, 11503 (2014).CrossRefGoogle Scholar
  8. 8.
    E. Kowsari and S. Abdpour, J. Solid State Chem. 256, 141 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Ehsani, E. Kowsari, F. Boorboor Ajdari, R. Safari, and H. Mohammad Shiri, J. Colloid Interface Sci. 512, 151 (2018).CrossRefGoogle Scholar
  10. 10.
    E. Laux, S. Uhl, T. Journot, J. Brossard, L. Jeandupeux, and H. Keppner, J. Electron. Mater. 45, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    E. Kowsari and M.R. Chirani, Carbon 118, 384 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Balducci, Top. Curr. Chem. 375, 1 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Srour, L. Chancelier, E. Bolimowska, T. Gutel, S. Mailley, H. Rouault, and C.C. Santini, J. Appl. Electrochem. 46, 149 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Zhang, K. Tsay, C. Bock, and J. Zhang, J. Power Sources 324, 615 (2016).CrossRefGoogle Scholar
  15. 15.
    A.R. Neale, S. Murphy, P. Goodrich, C. Schütter, C. Hardacre, S. Passerini, A. Balducci, and J. Jacquemin, J. Power Sources 326, 549 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Ehsani, E. Kowsari, M. Dashti Najafi, R. Safari, and H. Mohammad Shiri, J. Colloid Interface Sci. 500, 315 (2017).CrossRefGoogle Scholar
  17. 17.
    Y. Li, Z. Zhang, D. Duan, Y. Sun, G. Wei, X. Hao, S. Liu, Y. Han, and W. Meng, J. Power Sources 329, 207 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Agostini, U. Ulissi, D. Di Lecce, Y. Ahiara, S. Ito, and J. Hassoun, Energy Technol. 3, 632 (2015).CrossRefGoogle Scholar
  19. 19.
    L. Lombardo, S. Brutti, M.A. Navarra, S. Panero, and P. Reale, J. Power Sources 227, 8 (2013).CrossRefGoogle Scholar
  20. 20.
    K. Yamaguchi, Y. Domi, H. Usui, M. Shimizu, K. Matsumoto, T. Nokami, T. Itoh, and H. Sakaguchi, J. Power Sources 338, 103 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Eftekhari, Y. Liu, and P. Chen, J. Power Sources 334, 221 (2016).CrossRefGoogle Scholar
  22. 22.
    P. Salimi, K. Askari, and S. Kamali, J. Electron. Mater. 48, 951 (2019).CrossRefGoogle Scholar
  23. 23.
    K. Yin, Z. Zhang, L. Yang, and S. Hirano, J. Power Sources 258, 150 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Kim, Y. Jung, and S.J. Park, Electrochim. Acta 52, 2116 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, and M. Kono, J. Power Sources 160, 1308 (2006).CrossRefGoogle Scholar
  26. 26.
    J.K. Kim, A. Matic, J.H. Ahn, and P. Jacobsson, J. Power Sources 195, 7639 (2010).CrossRefGoogle Scholar
  27. 27.
    A. Chagnes, M. Diaw, B. Carr, P. Willmann, and D. Lemordant, J. Power Sources 145, 82 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Zhang and M. Urquidi-Macdonald, J. Power Sources 144, 191 (2005).CrossRefGoogle Scholar
  29. 29.
    A. Swiderska-Mocek, Electrochim. Acta 132, 504 (2014).CrossRefGoogle Scholar
  30. 30.
    V. Borgel, E. Markevich, D. Aurbach, G. Semrau, and M. Schmidt, J. Power Sources 189, 331 (2009).CrossRefGoogle Scholar
  31. 31.
    S. Li, P. Zhang, P.F. Fulvio, P.C. Hillesheim, G. Feng, S. Dai, and P.T. Cummings, J. Phys. Condens. Matter 48, 284105 (2016).Google Scholar
  32. 32.
    J.L. Anderson, R. Ding, A. Ellern, and D.W. Armstrong, J. Am. Chem. Soc. 127, 593 (2004).CrossRefGoogle Scholar
  33. 33.
    R.A. Patil, M. Talebi, C. Xu, S.S. Bhawal, and D.W. Armstrong, Chem. Mater. 28, 4315 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Steudte, S. Bemowsky, M. Mahrova, U. Bottin-Weber, E. Tojo-Suarez, P. Stepnowski, and S. Stolte, RSC Adv. 4, 5198 (2014).CrossRefGoogle Scholar
  35. 35.
    A.N. Masri, A.M. Mi, and J. Leveque, Ind. Eng. Manag. 5, 1 (2016).Google Scholar
  36. 36.
    C.-M. Jin, C. Ye, B.S. Phillips, J.S. Zabinski, X. Liu, W. Liu, and J.M. Shreeve, J. Mater. Chem. 16, 1529 (2006).CrossRefGoogle Scholar
  37. 37.
    K. Ito, N. Nishina, and H. Ohno, Electrochim. Acta 45, 1295 (2000).CrossRefGoogle Scholar
  38. 38.
    X. Han and D.W. Armstrong, Org. Lett. 7, 4205 (2005).CrossRefGoogle Scholar
  39. 39.
    J.F. Vélez, L.V. Álvarez, C. del Río, B. Herradón, E. Mann, and E. Morales, Electrochim. Acta 241, 517 (2017).CrossRefGoogle Scholar
  40. 40.
    Z.X. Zhang, H.Y. Zhou, L. Yang, K. Tachibana, K. Kamijima, and J. Xu, Electrochim. Acta 53, 4833 (2008).CrossRefGoogle Scholar
  41. 41.
    K. Yin, Z. Zhang, X. Li, L. Yang, K. Tachibana, and S.I. Hirano, J. Mater. Chem. A 3, 170 (2015).CrossRefGoogle Scholar
  42. 42.
    A. Ehsani, E. Kowsari, F. Boorboor Ajdari, R. Safari, and H. Mohammad Shiri, J. Colloid Interface Sci. 505, 1158 (2017).CrossRefGoogle Scholar
  43. 43.
    P. Ramadass, B.S. Haran, R.E. White, and B.N. Popov, J. Power Sources 112, 606 (2002).CrossRefGoogle Scholar
  44. 44.
    S. Li, P. Zhang, F. Fulvio Pasquale, C. Hillesheim Patrick, G. Feng, S. Dai, and T. Cummings Peter, J. Phys. Condens. Matter 26, 284105 (2014).CrossRefGoogle Scholar
  45. 45.
    A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, and S. Hajghani, J. Colloid Interface Sci. 490, 91 (2017).CrossRefGoogle Scholar
  46. 46.
    E. Kowsari, A. Ehsani, M.D. Najafi, N. Seifvand, and A.A. Heidari, Ionics 24, 2083 (2018).CrossRefGoogle Scholar
  47. 47.
    J. Patra, C.-H. Wang, T.-C. Lee, N. Wongittharom, Y.-C. Lin, G. Ting-Kuo Fey, S.B. Majumder, C.-T. Hsieh, and J.-K. Chang, RSC Adv. 5, 106824 (2015).CrossRefGoogle Scholar
  48. 48.
    S.Y. Lee, H.H. Yong, Y.J. Lee, S.K. Kim, and S. Ahn, J. Phys. Chem. B 109, 13663 (2005).CrossRefGoogle Scholar
  49. 49.
    Y. Jin, S. Fang, M. Chai, L. Yang, K. Tachibana, and S.I. Hirano, J. Power Sources 226, 210 (2013).CrossRefGoogle Scholar
  50. 50.
    K. Angenendt and P. Johansson, J. Phys. Chem. B 115, 7808 (2011).CrossRefGoogle Scholar
  51. 51.
    H. Kim, D.Q. Nguyen, H.W. Bae, J.S. Lee, B.W. Cho, H.S. Kim, M. Cheong, and H. Lee, Electrochem. Commun. 10, 1761 (2008).CrossRefGoogle Scholar
  52. 52.
    Y.S. Ding, M. Zha, J. Zhang, and S.S. Wang, Colloids Surfaces A Physicochem. Eng. Asp. 298, 201 (2007).CrossRefGoogle Scholar
  53. 53.
    S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D.L. Wood, Carbon 105, 52 (2016).CrossRefGoogle Scholar
  54. 54.
    A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, and K. Zaghib, J. Power Sources 195, 845 (2010).CrossRefGoogle Scholar
  55. 55.
    X. Zhang, C. Fan, P. Xiao, and S. Han, Electrochim. Acta 222, 221 (2016).CrossRefGoogle Scholar
  56. 56.
    S. Fang, Y. Tang, X. Tai, L. Yang, K. Tachibana, and K. Kamijima, J. Power Sources 196, 1433 (2011).CrossRefGoogle Scholar
  57. 57.
    Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen, and Y. Wei, J. Phys. Chem. C 114, 22751 (2010).CrossRefGoogle Scholar
  58. 58.
    P. Salimi, S. Javadian, O. Norouzi, and H. Gharibi, Environ. Sci. Pollut. Res. 24, 27974 (2017).CrossRefGoogle Scholar
  59. 59.
    V. Muenzel, A.F. Hollenkamp, A.I. Bhatt, J. de Hoog, M. Brazil, D.A. Thomas, and I. Mareels, J. Electrochem. Soc. 162, A1592 (2015).CrossRefGoogle Scholar
  60. 60.
    S. Javadian, J. Kakemam, H. Gharibi, and H. Kashani, Int. J. Hydrogen Energy 42, 13136 (2017).CrossRefGoogle Scholar
  61. 61.
    H. Li, J. Pang, Y. Yin, W. Zhuang, H. Wang, C. Zhai, and S. Lu, RSC Adv. 3, 13907 (2013).CrossRefGoogle Scholar
  62. 62.
    A.M. Andersson and K. Edström, J. Electrochem. Soc. 148, A1100 (2001).CrossRefGoogle Scholar
  63. 63.
    E.M. Krieger, J. Cannarella, and C.B. Arnold, Energy 60, 492 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran
  2. 2.Department of ChemistryAmirkabir University of TechnologyTehranIran

Personalised recommendations