Advertisement

Effective Defect Passivation by Hydrogen Using a Laser Light Source

  • Mohammad Shakil AhmmedEmail author
  • Nazmul Huda
Electronic Materials for Renewable Energy Applications 2018
  • 2 Downloads
Part of the following topical collections:
  1. 6th European Conference on Renewable Energy Systems

Abstract

This paper presents a detailed investigation of the effect of a diode laser-induced thermal process on the hydrogen passivation of boron–oxygen (B–O) defects using numerical modelling. A state-of-the-art numerical model is developed using OpenFOAM based on a finite volume approach. The model considered dissociation, formation and passivation of the B–O defects including four reaction kinetics, and solved the coupled thermal equations and kinetic models. The developed model is then applied to elucidate the influence of passivation, as well as the formation of a B–O defect complex using laser-induced thermal phenomena by varying the key parameters of laser power and exposure time. The results reveal some interesting insights on how the hydrogen evolves out of the B–O defect sites, in the form of dissociation, when the exposure time is higher than 20 s, and hence affect the hydrogenated defect passivation process.

Keywords

Hydrogenation CFD thermal treatment semiconductors defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The present contribution is based on the author’s Ph.D. and postdoctoral research work conducted at the UNSW Sydney. The author acknowledges the School of Mechanical and Manufacturing Engineering and the School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, NSW, Australia.

References

  1. 1.
    S.H. Lee, M.F. Bhopal, D.W. Lee, and S.H. Lee, Mater. Sci. Semicond. Process. 79, 66 (2018).CrossRefGoogle Scholar
  2. 2.
    P. Santos, J. Coutinho, and S. Oberg, Mater. Sci. Semicond. Process. 123, 1 (2018).Google Scholar
  3. 3.
    S.R. Wenham, C.B. Honsberg, and M.A. Green, Sol. Energy Mater. Sol. Cells 34, 101 (1994).CrossRefGoogle Scholar
  4. 4.
    A. Wenham, L. Song, M. Abbott, I. Zafirovska, S. Wang, B. Hallam, C. Chan, A. Barnett, and S. Wenham, Front. Energy 11, 60 (2017).CrossRefGoogle Scholar
  5. 5.
    Z. Wang, L. Zhang, S. Shi, P. Zhang, X. Cao, and B. Wang, J. Electron. Mater. 45, 5064 (2016).CrossRefGoogle Scholar
  6. 6.
    T. Basu, M. Ray, N.R. Bandyopadhay, A.K. Pramanik, and S.M. Hossain, J. Electron. Mater. 42, 403 (2013).CrossRefGoogle Scholar
  7. 7.
    P.N. Vinod, J. Electron. Mater. 42, 29052909 (2013).CrossRefGoogle Scholar
  8. 8.
    D. Chen, P.G. Hamer, M. Kim, T.H. Fung, G.B. Sicotte, S. Liu, C.E. Chan, A. Ciesla, R. Chen, M.D. Abbott, B.J. Hallam, and S.R. Wenham, Sol. Energy Mater. Sol. Cells 185, 174 (2018).CrossRefGoogle Scholar
  9. 9.
    V. Yelundur, A. Rohatgi, J.W. Jeong, A.M. Gabor, J.I. Hanoka, and R.L. Wallace, Proceedings of the 28th IEEE Photovoltaic Specialists Conference 91–94 (2000).Google Scholar
  10. 10.
    A. Rohatgi and J.W. Jeong, Appl. Phys. Lett. 82, 224 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, M.D. Rosenblum, and J.I. Hanoka, Sol. Energy Mater. Sol. Cells 74, 117 (2002).CrossRefGoogle Scholar
  12. 12.
    B. Hallam, P. Hamer, S. Wenham, M. Abbott, A. Sugianto, A. Wenham, and C. Chan, IEEE J. Photovolt. 4, 88 (2004).CrossRefGoogle Scholar
  13. 13.
    B. Hallam, D. Chen, M. Kim, B. Stefani, B. Hoex, M. Abbott, and S. Wenham, Phys. Status Solidi A 1700305, 1 (2017).Google Scholar
  14. 14.
    B. Hallam, M. Abott, N. Nampalli, P. Hammer, and S. Wenham, J. Appl. Phys. 119, 1 (2016).Google Scholar
  15. 15.
    P. Hamer, B. Hallam, R.S. Bonilla, P.P. Altermatt, P. Wilshaw, and S. Wenham, J. Appl. Phys. 123, 1 (2018).Google Scholar
  16. 16.
    P. Hamer, C. Chan, R.S. Bonilla, B. Hallam, G.B. Sicotte, K.A. Collett, S. Wenham, and P.R. Wilshaw, Sol. Energy Mater. Sol. Cells 184, 91 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Stavola, F. Jiang, A. Rhotagi, J. Holt, H. Atwater, and J. Kalejs, 3 rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003).Google Scholar
  18. 18.
    G. Hahn and A. Schonecker, J. Appl. Phys. Condensed Matter 16, 16151648 (2004).Google Scholar
  19. 19.
    C.M. Chong, S. Wenham, J. Ji, L. Mai, S. Wang, B. Hallam, and H. Li, Int. J. Photoenergy 2018, 1 (2018).CrossRefGoogle Scholar
  20. 20.
    M.S. Ahmmed, L. Song, and N. Huda, Phys. Status Solidi A 201800060, 1 (2018).Google Scholar
  21. 21.
    L. Song, X. Zheng, J. Fu, and Z. Ji, J. Alloys Compd. 698, 892 (2017).CrossRefGoogle Scholar
  22. 22.
    L. Song, A. Wenham, S. Wang, P. Hamer, M.S. Ahmmed, B. Hallam, L. Mai, M. Abbott, E.R. Hawkes, C. Chong, and S. Wenham, Int. J Photoenergy 193892, 1 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Song, L. Mai, and S. Wenham, Sol. Energy 122, 341346 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Song, Appl. Phys. A 122, 930 (2016).CrossRefGoogle Scholar
  25. 25.
    L. Song, A. Wenham, and S. Wenham, Sol. Energy Mater. Sol. Cells 149, 221225 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Song, J. Wilson, and J. Lee, J. Phys. D Appl. Phys. 49, 315601 (2016).CrossRefGoogle Scholar
  27. 27.
    F. Jiang, M. Stavola, A. Rohatgi, D. Kim, J. Holt, H. Atwater, and J. Kalejs, Appl. Phys. Lett. 83, 931 (2003).CrossRefGoogle Scholar
  28. 28.
    R. Wood and G. Geist, Phys. Rev. B: Condens. Matter 34, 26062619 (1986).Google Scholar
  29. 29.
    M.A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008).CrossRefGoogle Scholar
  30. 30.
    N.M. Ravindra, K. Ravindra, S. Mahendra, B. Sopori, and A.T. Fiory, J. Electron. Mater. 32, 1052 (2003).CrossRefGoogle Scholar
  31. 31.
    B. Sopori, W. Chen, J. Madjdpour, and N.M. Ravindra, J. Electron. Mater. 28, 1385 (1999).CrossRefGoogle Scholar
  32. 32.
    T.T. Rantala and J. Levoska, J. Appl. Phys. 65, 4475 (1989).CrossRefGoogle Scholar
  33. 33.
    H.W. Lo and A. Compaan, J. Appl. Phys. 51, 1565 (1980).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical and Manufacturing EngineeringUNSW SydneySydneyAustralia
  2. 2.Sustainable Energy Systems Engineering Research Group, School of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations