Preparation and Nonlinear Conductivity Characteristics of Silicone Rubber Filled with Silver-Coated Tetrapod-Shaped ZnO Whiskers

  • Jingkai NieEmail author
  • Dong Hou
  • Guangke Wang
  • Fu Guo
  • Xin Chen


Tetrapod-shaped zinc oxide (T-ZnO) whiskers were coated with silver by chemical plating (T-ZnO@Ag). T-ZnO(T-ZnO@Ag)/silicone rubber composites were fabricated at a temperature of 165°C and pressure of 15 MPa. The nonlinear conductivity characteristics of T-ZnO (T-ZnO@Ag)/silicone rubber composites with volume fractions of 1 vol.%, 2.4 vol.%, 3.7 vol.%, and 5 vol.% were investigated. The dielectric properties of the composites at frequencies of 0.1 Hz to 10 MHz were analyzed. The conductivity of the T-ZnO/silicone rubber composite increased with the T-ZnO content, while the switching field decreased. Upon the coating of T-ZnO with Ag, the nonlinear characteristics of the T-ZnO@Ag/silicone rubber composite significantly enhanced. The nonlinear coefficient reached 10.95 at the filler content of 2.4 vol.%. The percolation threshold of T-ZnO fillers is significantly lower than that of spherical ZnO fillers. Percolation threshold and Schottky barrier effect were utilized to explain the nonlinear electrical properties.


Tetrapod-shaped zinc oxide whiskers chemical plating silicone rubber nonlinear conductivity characteristics dielectric properties percolation threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors appreciate the financial support by the State Corporation of China and Global Energy Interconnection Research Institute Co. Ltd.


  1. 1.
    S. Ilhan and A. Ozdemir, IEEE Trans. Dielectr. Electr. Insul. 18, 1638 (2011).CrossRefGoogle Scholar
  2. 2.
    T. Doshi, R.S. Gorur, and J. Hunt, IEEE Trans. Dielectr. Electr. Insul. 18, 861 (2011).CrossRefGoogle Scholar
  3. 3.
    L. Gao, X. Yang, J. Hu, and J. He, Mater. Lett. 171, 1 (2016).CrossRefGoogle Scholar
  4. 4.
    L. Donzel and J. Schuderer, IEEE Trans. Dielectr. Electr. Insul. 19, 955 (2012).CrossRefGoogle Scholar
  5. 5.
    G.S. Wang, Y. Deng, Y. Xiang, and L. Guo, Adv. Funct. Mater. 18, 2584 (2008).CrossRefGoogle Scholar
  6. 6.
    L. Donzel, F. Greuter, and T. Christen, IEEE Electr. Insul. Mag. 27, 18 (2011).CrossRefGoogle Scholar
  7. 7.
    J. Tian, R. Xu, H. He, and Y. Feng, J. Alloys Compd. 723, 1011 (2017).CrossRefGoogle Scholar
  8. 8.
    R. Abd-Rahman, A. Haddad, N. Harid, and H. Griffiths, IEEE Trans. Dielectr. Electr. Insul. 19, 705 (2012).CrossRefGoogle Scholar
  9. 9.
    X. Yang, J. He, and J. Hu, J. Appl. Polym. Sci. (2015). Scholar
  10. 10.
    E. Tuncer, Solid State Electron. 134, 46 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Wang, J.K. Nelson, and L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 17, 1687 (2010).CrossRefGoogle Scholar
  12. 12.
    T. Christen, L. Donzel, and F. Greuter, IEEE Electr. Insul. Mag. 26, 47 (2010).CrossRefGoogle Scholar
  13. 13.
    S.M. Lebedev, O.S. Gefle, and A.E. Strizhkov, IEEE Electr. Insul. Mag. 20, 289 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Jiang, R. Sun, H. Zhang, P. Min, D. Yang, and Z. Yu, Compos. Part A 94, 104 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China
  2. 2.Global Energy Interconnection Research Institute Co. LtdFuture City for Science and TechnologyChangping District, BeijingPeople’s Republic of China

Personalised recommendations