Journal of Electronic Materials

, Volume 48, Issue 5, pp 2886–2894 | Cite as

Piezoelectric Nanogenerators Based on Self-Poled Two-Dimensional Li-Doped ZnO Microdisks

  • Sibo He
  • Yiping GuoEmail author
  • Runjiang Guo
  • Xiuwu Fu
  • Lin Guan
  • Hezhou Liu


Two-dimensional materials with high-strength and stress-sensitive characteristics are promising for application in piezoelectric energy harvesting. We have synthesized two-dimensional Li-doped ZnO microdisks via a simple one-step hydrothermal method combined with low-temperature calcination. The Li-doped ZnO was self-poled with d33 of ∼ 15 pm V−1. The effect of the lithium concentration, precursor concentration, Li-doped ZnO weight ratio, and poling process on the output of nanogenerators based on the Li-doped ZnO microdisks was fully investigated. An outstanding output (∼ 20 V, ∼ 18 μA cm−2, and ∼ 5.33 mW cm−3) was obtained without a poling process. The stability was confirmed by fatigue testing over 36,000 cycles. This work provides a feasible solution to address the longstanding aim of achieving a balance between high output and cost-effective manufacturing of piezoelectric energy harvesters.


Lithium doping ZnO microdisk self-poled nanogenerator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Natural Science Foundation of China (Nos. 11474199 and 51332009). The Instrumental Analysis Center of Shanghai Jiao Tong University is sincerely acknowledged for assisting with relevant analyses. S.H. specially appreciates Lidan Shi for discussion on experiments and encouragement.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11664_2019_7025_MOESM1_ESM.pdf (385 kb)
Supplementary material 1 (PDF 385 kb)
11664_2019_7025_MOESM2_ESM.mp4 (15.4 mb)
Supplementary material 2 (MP4 15759 kb)
11664_2019_7025_MOESM3_ESM.mp4 (17.8 mb)
Supplementary material 3 (MP4 18198 kb)


  1. 1.
    W. Wu and Z.L. Wang, Nat. Rev. Mater. 1, 16031 (2016).CrossRefGoogle Scholar
  2. 2.
    C. Chen and J. Zhu, Appl. Phys. Lett. 90, 043105 (2007).CrossRefGoogle Scholar
  3. 3.
    P. Li, Q. Liao, S. Yang, X. Bai, Y. Huang, X. Yan, Z. Zhang, S. Liu, P. Lin, and Z. Kang, Nano Lett. 14, 480 (2014).CrossRefGoogle Scholar
  4. 4.
    Z.L. Wang and J. Song, Science 312, 242 (2006).CrossRefGoogle Scholar
  5. 5.
    X. Wang, J. Song, J. Liu, and Z.L. Wang, Science 316, 102 (2007).CrossRefGoogle Scholar
  6. 6.
    Z.L. Wang, MRS Bull. 37, 814 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Sun, H. Tian, Y. Yang, D. Xie, Y.-C. Zhang, X. Liu, S. Ma, H.-M. Zhao, and T.-L. Ren, Nanoscale 5, 6117 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Saravanakumar, R. Mohan, K. Thiyagarajan, and S.-J. Kim, RSC Adv. 3, 16646 (2013).CrossRefGoogle Scholar
  9. 9.
    S.-H. Shin, Y.-H. Kim, M.H. Lee, J.-Y. Jung, J.H. Seol, and J. Nah, ACS Nano 8, 10844 (2014).CrossRefGoogle Scholar
  10. 10.
    C. Liu, A. Yu, M. Peng, M. Song, W. Liu, Y. Zhang, and J. Zhai, J. Phys. Chem. C 120, 6971 (2016).CrossRefGoogle Scholar
  11. 11.
    M.-P. Lu, J. Song, M.-Y. Lu, M.-T. Chen, Y. Gao, L.-J. Chen, and Z.L. Wang, Nano Lett. 9, 1223 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Hu, L. Lin, Y. Zhang, and Z.L. Wang, Adv. Mater. 24, 110 (2012).CrossRefGoogle Scholar
  13. 13.
    K.Y. Lee, B. Kumar, J.-S. Seo, K.-H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang, and S.-W. Kim, Nano Lett. 12, 1959 (2012).CrossRefGoogle Scholar
  14. 14.
    S.-H. Shin, M.H. Lee, J.-Y. Jung, J.H. Seol, and J. Nah, J. Mater. Chem. C 1, 8103 (2013).CrossRefGoogle Scholar
  15. 15.
    H. Kim, S.M. Kim, H. Son, H. Kim, B. Park, J. Ku, J.I. Sohn, K. Im, J.E. Jang, and J.-J. Park, Energy Environ. Sci. 5, 8932 (2012).CrossRefGoogle Scholar
  16. 16.
    W.W. Wenas, A. Yamada, K. Takahashi, M. Yoshino, and M. Konagai, J. Appl. Phys. 70, 7119 (1991).CrossRefGoogle Scholar
  17. 17.
    B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C. Granqvist, Phys. Rev. B 37, 10244 (1988).CrossRefGoogle Scholar
  18. 18.
    K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
  19. 19.
    H. Saeki, H. Tabata, and T. Kawai, Solid State Commun. 120, 439 (2001).CrossRefGoogle Scholar
  20. 20.
    K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).CrossRefGoogle Scholar
  21. 21.
    V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006).CrossRefGoogle Scholar
  22. 22.
    Y.-S. Kim and W.-P. Tai, Appl. Surf. Sci. 253, 4911 (2007).CrossRefGoogle Scholar
  23. 23.
    B. Wang, L. Tang, J. Qi, H. Du, and Z. Zhang, J. Alloys Compd. 503, 436 (2010).CrossRefGoogle Scholar
  24. 24.
    R. Yousefi, A.K. Zak, and F. Jamali-Sheini, Ceram. Int. 39, 1371 (2013).CrossRefGoogle Scholar
  25. 25.
    C.-C. Lin, C.-C. Chang, C.-J. Wu, Z.-L. Tseng, J.-F. Tang, S.-Y. Chu, Y.-C. Chen, and X. Qi, Appl. Phys. Lett. 102, 102107 (2013).CrossRefGoogle Scholar
  26. 26.
    X. Wang, Z. Wu, J. Webb, and Z. Liu, Appl. Phys. A 77, 561 (2003).CrossRefGoogle Scholar
  27. 27.
    Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009).CrossRefGoogle Scholar
  28. 28.
    G. Li, T. Hu, G. Pan, T. Yan, X. Gao, and H. Zhu, J. Phys. Chem. C 112, 11859 (2008).CrossRefGoogle Scholar
  29. 29.
    S. Cho, J.-W. Jang, A. Jung, S.-H. Lee, J. Lee, J.S. Lee, and K.-H. Lee, Langmuir 27, 371 (2010).CrossRefGoogle Scholar
  30. 30.
    N. Qin, Q. Xiang, H. Zhao, J. Zhang, and J. Xu, CrystEngComm 16, 7062 (2014).CrossRefGoogle Scholar
  31. 31.
    G.-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. Van Der Zande, N. Petrone, A.G. Hammerberg, C. Lee, B. Crawford, and W. Oliver, Science 340, 1073 (2013).CrossRefGoogle Scholar
  32. 32.
    S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
  33. 33.
    H. Zhong, X. Li, Z. Wu, S. Zhang, Z. Xu, H. Chen, and S. Lin, Appl. Phys. Lett. 106, 243903 (2015).CrossRefGoogle Scholar
  34. 34.
    W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, and T.F. Heinz, Nature 514, 470 (2014).CrossRefGoogle Scholar
  35. 35.
    J. Hu, Y. Fan, Y. Pei, M. Qiao, K. Fan, X. Zhang, and B. Zong, ACS Catal. 3, 2280 (2013).CrossRefGoogle Scholar
  36. 36.
    T. Sahoo, S.K. Nayak, P. Chelliah, M.K. Rath, and B. Parida, MRS Bull. 75, 134 (2016).CrossRefGoogle Scholar
  37. 37.
    Z. Wang, L. Gan, H. He, and Z. Ye, ACS Appl. Mater. Interfaces 9, 13537 (2017).CrossRefGoogle Scholar
  38. 38.
    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, and H. Xu, Nat. Mater. 2, 821 (2003).CrossRefGoogle Scholar
  39. 39.
    H. Tang, J.C. Chang, Y. Shan, and S.-T. Lee, J. Phys. Chem. B 112, 4016 (2008).CrossRefGoogle Scholar
  40. 40.
    X. Liu, M. Afzaal, K. Ramasamy, P. O’Brien, and J. Akhtar, J. Am. Chem. Soc. 131, 15106 (2009).CrossRefGoogle Scholar
  41. 41.
    N.T. Khoa, S.W. Kim, D. Van Thuan, D.-H. Yoo, E.J. Kim, and S.H. Hahn, CrystEngComm 16, 1344 (2014).CrossRefGoogle Scholar
  42. 42.
    Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, J. Phys. Chem. B 110, 20263 (2006).CrossRefGoogle Scholar
  43. 43.
    C.-L. Kuo, T.-J. Kuo, and M.H. Huang, J. Phys. Chem. B 109, 20115 (2005).CrossRefGoogle Scholar
  44. 44.
    D. Wang, G. Yuan, G. Hao, and Y. Wang, Nano Energy 43, 351 (2018).CrossRefGoogle Scholar
  45. 45.
    R. Guo, Y. Guo, H. Duan, H. Li, and H. Liu, ACS Appl. Mater. Interfaces 9, 8271 (2017).CrossRefGoogle Scholar
  46. 46.
    G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao, Y. Zhang, C.K. Jeong, S. Jiang, S. Zhang, and Q. Wang, Energy Environ. Sci. 11, 2046 (2018).CrossRefGoogle Scholar
  47. 47.
    J. Song, B. Yang, W. Zeng, Z. Peng, S. Lin, J. Li, and X. Tao, Adv. Mater. Technol. 3, 1800016 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations