Journal of Electronic Materials

, Volume 48, Issue 5, pp 3026–3035 | Cite as

Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance

  • Botong Zhou
  • Yanwei Sui
  • Jiqiu QiEmail author
  • Yezeng He
  • Qingkun Meng
  • Fuxiang Wei
  • Yaojian RenEmail author
  • Xuping Zhang


In this paper, activated porous carbon (AC) derived from bagasse was prepared by carbonization and activation using KOH. Then, a hydrothermal route was employed to fabricate ultrathin manganese oxide (MnO2) nanosheets/activated porous carbon (AC) composite (MnO2/AC). AC and MnO2/AC composite were employed as negative and positive electrode materials for a supercapacitor, respectively. An AC electrode delivers excellent electrochemical properties with a specific capacitance of 89 F g−1 at 1 A g−1 and super cycling stability of 89% capacitance retention after 5000 cycles. For a MnO2/AC composite, its specific capacitance can reach 492.5 F g−1 at 1 A g−1, but its cycle performance (78.4% capacitance retention after 5000 cycles) is lower than that of AC (89%). In view of the good electrochemical performance of AC and MnO2/AC composite, a MnO2/AC//AC all-solid-state asymmetric supercapacitor (ASC) was assembled. The constructed ASC exhibits high specific capacitance of 69.375 F g−1 at 1 A g−1 and delivers a high energy density of 24.67 Wh kg−1 at a power density of 814.8 W kg−1. Two ASCs in series can power one LED for more than 70 s. This work demonstrates that MnO2/AC//AC asymmetric supercapacitor shows good practical value.


Asymmetric supercapacitor activated porous carbon MnO2 nanosheets biomass electrochemical performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51601220 and 51671214) and the Science and Technology Planning Project of Jiangsu Province (No. BY2016026-05).

Supplementary material

11664_2019_7019_MOESM1_ESM.pdf (489 kb)
Supplementary material 1 (PDF 489 kb)


  1. 1.
    R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, and P. Cao, Chem. Eng. J. 331, 527 (2018).CrossRefGoogle Scholar
  2. 2.
    W.G. Pell, B.E. Conway, W.A. Adams, and J. de Oliveira, J. Power Sources 80, 134 (1999).CrossRefGoogle Scholar
  3. 3.
    X. Liu, F.X. Wei, Y.W. Sui, J.Q. Qi, Y.Z. He, and Q.K. Meng, J. Alloys Compd. 735, 1339 (2018).CrossRefGoogle Scholar
  4. 4.
    Z.Y. Zhang, F. Xiao, and S. Wang, J. Mater. Chem. A 3, 11215 (2015).CrossRefGoogle Scholar
  5. 5.
    L. Miao, H. Duan, M.X. Liu, W.J. Lu, D.Z. Zhu, T. Chen, L.C. Li, and L.H. Gan, Chem. Eng. J. 317, 651 (2017).CrossRefGoogle Scholar
  6. 6.
    H.J. Tang, J.Y. Wang, H.J. Yin, H.J. Zhao, D. Wang, and Z.Y. Tang, Adv. Mater. 27, 1117 (2015).CrossRefGoogle Scholar
  7. 7.
    J.Q. Qi, Y. Chang, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, and Y.X. Jin, Adv. Mater. Interfaces 5 (2018).Google Scholar
  8. 8.
    Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, and Y.X. Jin, Electrochim. Acta 226, 69 (2017).CrossRefGoogle Scholar
  9. 9.
    R.R. Salunkhe, Y.V. Kaneti, and Y. Yamauchi, ACS Nano 11, 5293 (2017).CrossRefGoogle Scholar
  10. 10.
    J.F. Wu, Q.E. Zhang, A.A. Zhou, Z.F. Huang, H. Bai, and L. Li, Adv. Mater. 28, 10211 (2016).CrossRefGoogle Scholar
  11. 11.
    F. Sun, J.H. Gao, X.X. Pi, L.J. Wang, Y.Q. Yang, Z.B. Qu, and S.H. Wu, J. Power Sources 337, 189 (2017).CrossRefGoogle Scholar
  12. 12.
    B. Li, F. Dai, Q.F. Xiao, L. Yang, J.M. Shen, C.M. Zhang, and M. Cai, Energy Environ. Sci. 9, 102 (2016).CrossRefGoogle Scholar
  13. 13.
    X.Q. Zhu, S. Yu, K.T. Xu, Y. Zhang, L.M. Zhang, G.B. Lou, Y.T. Wu, E.H. Zhu, H. Chen, Z.H. Shen, B.F. Bao, and S.Y. Fu, Chem. Eng. Sci. 181, 36 (2018).CrossRefGoogle Scholar
  14. 14.
    X. Zhang, J.M. Wang, J. Liu, J. Wu, H. Chen, and H. Bi, Carbon 115, 134 (2017).CrossRefGoogle Scholar
  15. 15.
    S.Y. Wen, Y. Liu, H.Y. Bai, R. Shao, W. Xu, and W.D. Shi, J. Solid State Chem. 262, 327 (2018).CrossRefGoogle Scholar
  16. 16.
    S.R. Yang, C. Wu, J.J. Cai, Y. Zhu, H.T. Zhang, Y. Lu, and K.L. Zhang, J. Mater. Chem. A 5, 16776 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, and M. Sathish, Acs Appl. Mater. Inter. 8, 35191 (2016).CrossRefGoogle Scholar
  18. 18.
    G.X. Zhang, Y.M. Chen, Y.G. Chen, and H.B. Guo, Mater. Res. Bull. 102, 391 (2018).CrossRefGoogle Scholar
  19. 19.
    T. Kshetri, T.D. Thanh, S.B. Singh, N.H. Kim, and J.H. Lee, Chem. Eng. J. 345, 39 (2018).CrossRefGoogle Scholar
  20. 20.
    Y. Gao, Y.Y. Wan, B.Q. Wei, and Z.H. Xia, Adv. Funct. Mater. 28 (2018).Google Scholar
  21. 21.
    L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu, ACS Nano 6, 7092 (2012).CrossRefGoogle Scholar
  22. 22.
    Z. Jin, Y.X. Liu, X.D. Bai, X.M. Ren, C.L. Qin, and Y.H. Wang, Pigm. Resin Technol. 40, 175 (2011).CrossRefGoogle Scholar
  23. 23.
    W. Wang, L.J. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, and Z. Sun, J. Mater. Sci-Mater. El. 29, 2120 (2018).CrossRefGoogle Scholar
  24. 24.
    Y.Q. Lai, J. Li, H.S. Song, Z.A. Zhang, J. Li, Y.X. Liu, and J. Cent, South Univ. T. 14, 633 (2007).CrossRefGoogle Scholar
  25. 25.
    X.L. Su, M.Y. Cheng, L. Fu, J.H. Yang, X.C. Zheng, and X.X. Guan, J. Power Sources 362, 27 (2017).CrossRefGoogle Scholar
  26. 26.
    A. Volperts, G. Dobele, A. Zhurinsh, Z. Zalane, J. Ozolinsh, J. Kleperis, D. Vervikishko, and E. Shkolnikov, Bulg. Chem. Commun. 48, 337 (2016).Google Scholar
  27. 27.
    Y.C. Yao, Q. Zhang, P. Liu, L. Yu, L. Huang, S.Z. Zeng, L.J. Liu, X.R. Zeng, and J.Z. Zou, Rsc Adv. 8, 1857 (2018).CrossRefGoogle Scholar
  28. 28.
    J.W. Jeon, L.B. Zhang, J.L. Lutkenhaus, D.D. Laskar, J.P. Lemmon, D. Choi, M.I. Nandasiri, A. Hashmi, J. Xu, R.K. Motkuri, C.A. Fernandez, J. Liu, M.P. Tucker, P.B. McGrail, B. Yang, and S.K. Nune, Chemsuschem 8, 428 (2015).CrossRefGoogle Scholar
  29. 29.
    D.W. Wang, G.L. Fang, T. Xue, J.F. Ma, and G.H. Geng, J. Power Sources 307, 401 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Hong and S. Yim, Langmuir 34, 4249 (2018).CrossRefGoogle Scholar
  31. 31.
    J.H. Kwak, Y.W. Lee, and J.H. Bang, Mater. Lett. 110, 237 (2013).CrossRefGoogle Scholar
  32. 32.
    Z.N. Yu, B. Duong, D. Abbitt, and J. Thomas, Adv. Mater. 25, 3302 (2013).CrossRefGoogle Scholar
  33. 33.
    G.N. Zhang, L.J. Ren, D.W. Hu, H.X. Gu, and S. Zhang, J. Colloid Interf. Sci. 518, 84 (2018).CrossRefGoogle Scholar
  34. 34.
    C.J. Yuan, H.B. Lin, H.Y. Lu, E.D. Xing, Y.S. Zhang, and B.Y. Xie, Appl. Energ. 178, 260 (2016).CrossRefGoogle Scholar
  35. 35.
    M.X. Liu, L.H. Gan, W. Xiong, Z.J. Xu, D.Z. Zhu, and L.W. Chen, J. Mater. Chem. A 2, 2555 (2014).CrossRefGoogle Scholar
  36. 36.
    Y. Liu, X.M. Zhou, R. Liu, X.L. Li, Y. Bai, and G.H. Yuan, N. J. Chem. 41, 14906 (2017).CrossRefGoogle Scholar
  37. 37.
    W.J. Lu, S.Z. Huang, L. Miao, M.X. Liu, D.Z. Zhu, L.C. Li, H. Duan, Z.J. Xu, and L.H. Gan, Chin. Chem. Lett. 28, 1324 (2017).CrossRefGoogle Scholar
  38. 38.
    X.J. Li, J. Zhou, W. Xing, F. Subhan, Y. Zhang, P. Bai, B.J. Xu, S.P. Zhuo, Q.Z. Xue, and Z.F. Yan, Electrochim. Acta 190, 923 (2016).CrossRefGoogle Scholar
  39. 39.
    I.I.G. Inal, S.M. Holmes, A. Banford, and Z. Aktas, Appl. Surf. Sci. 357, 696 (2015).CrossRefGoogle Scholar
  40. 40.
    A. Sliwak, A. Moyseowicz, and G. Gryglewicz, J. Mater. Chem. A 5, 5680 (2017).CrossRefGoogle Scholar
  41. 41.
    Y. Zhao, Y.N. Meng, and P. Jiang, J. Power Sources 259, 219 (2014).CrossRefGoogle Scholar
  42. 42.
    V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, and F. Beguin, Appl. Phys. A-Mater. 82, 567 (2006).CrossRefGoogle Scholar
  43. 43.
    Z.C. Li, A.J. Gu, Z.S. Lou, J.H. Sun, Q.F. Zhou, and K.Y. Chan, J. Mater. Sci. 52, 4852 (2017).CrossRefGoogle Scholar
  44. 44.
    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).CrossRefGoogle Scholar
  45. 45.
    Y.J. Li, N. Yu, P. Yan, Y.G. Li, X.M. Zhou, S.L. Chen, G.L. Wang, T. Wei, and Z.J. Fan, J. Power Sources 300, 309 (2015).CrossRefGoogle Scholar
  46. 46.
    T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Belanger, Appl. Phys. A-Mater. 82, 599 (2006).CrossRefGoogle Scholar
  47. 47.
    Y.C. Liu, D.W. He, H.L. Wu, J.H. Duan, and Y.N. Zhang, Electrochim. Acta 164, 154 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Botong Zhou
    • 1
  • Yanwei Sui
    • 1
    • 2
    • 3
  • Jiqiu Qi
    • 1
    • 2
    • 3
    Email author
  • Yezeng He
    • 1
  • Qingkun Meng
    • 1
  • Fuxiang Wei
    • 1
    • 2
    • 3
  • Yaojian Ren
    • 1
    Email author
  • Xuping Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  3. 3.Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations