Electrical Properties of Metal-Porous GaAs Structure at Water Adsorption

  • Yurii MilovanovEmail author
  • Valeriy Skryshevsky
  • Iryna Gavrilchenko
  • Anatoliy Oksanich
  • Sergiy Pritchin
  • Maksym Kogdas


This paper reports the morphological, optical, luminescent and electrical properties of electrochemically made porous GaAs in order to evaluate their humidity sensing performance. The obtained porous GaAs exhibits non-homogenous surface morphology, which consists of pyramid-shaped crystallites and micropores. Photoluminescent and FTIR study shows that the surface of such material is covered by an oxide of As and Ga. The impedance spectroscopy was applied to analyze the influence of water vapor on electrical properties of metal-porous GaAs. It was shown that water adsorption results in the Nyquist plots shift to the region of higher frequencies. In humid atmosphere resistance Rv and characteristic time of charge accumulation τ are decreased by 1.4 times and 5 times, respectively; resistance Rb and capacity Cb decreased by 1.4 times and 4.4 times, respectively. The response of the metal-porous GaAs structure to the adsorption of water is attributed to the decreasing of the bulk resistivity and potential barrier height. The formed oxide layer on the surface of porous GaAs plays a dual role—it increases the ability to adsorb water molecules and prevents the surface from receiving structural degradation.


Porous GaAs SEM DRIFT spectrum impedance spectroscopy Nyquist plot humidity sensor 


FTIR spectroscopy

Fourier transform infrared spectroscopy

DRIFT spectra

Diffuse reflectance infrared Fourier transform spectra


Atomic force microscope


Scanning electron microscope




Full width at half maximum


Constant phase element


X-ray photoelectronic spectroscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank A. Pastushenko (INSA Lyon) for SEM measurements.

Authors’ Contributions

YM and IG carried out the measurements and calculations. AO and MK fabricated the samples of porous GaAs. VS and SP proposed the idea of the work and analyzed the results. All authors have read and approved the final manuscript.

Conflict of interest

The authors declare that they have no competing interests.


The results of these studies were obtained without any sources of funding.


  1. 1.
    Z. Chen and C. Lu, Sens. Lett. 3, 274 (2005).CrossRefGoogle Scholar
  2. 2.
    E. Traversa, Sens. Actuators B Chem. 23, 135 (1995).CrossRefGoogle Scholar
  3. 3.
    E.J. Connolly, G.M. O‘Halloran, H.T.M. Pham, P.M. Sarro, and P.J. French, Sens. Actuators A Phys. 99, 25 (2002).CrossRefGoogle Scholar
  4. 4.
    S.J. Kim, J.Y. Park, S.H. Lee, and S.H. Yi, J. Phys. D Appl. Phys. 33, 1781 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Muto, O. Suzuki, T. Amano, and M. Morisawa, Meas. Sci. Technol. 14, 746 (2003).CrossRefGoogle Scholar
  6. 6.
    N.I. Klyui, I.I. Ivanov, O.S. Kyslovets, L.V. Avksentyeva, and V.A. Skryshevsky, Sens. Actuators B Chem. 242, 1177 (2017).CrossRefGoogle Scholar
  7. 7.
    V. Strikha, V. Skryshevsky, V. Polishchuk, E. Souteyrand, and J.R. Martin, J. Porous Mater. 7, 111 (2000).CrossRefGoogle Scholar
  8. 8.
    J. Slunecko, J. Holc, M. Hrovat, and M. Ceh, Sens. Actuators B Chem. 7, 439 (1992).CrossRefGoogle Scholar
  9. 9.
    Y. Sakai, Y. Sadaoka, and M. Matsuguchi, Sens. Actuators B Chem. 35–36, 85 (1996).CrossRefGoogle Scholar
  10. 10.
    V.A. Skryshevsky, Appl. Surf. Sci. 157, 145 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Korotcenkov, S.-D. Han, B.K. Cho, and V. Brinzari, Crit. Rev. Solid State Mater. Sci. 34, 1 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Salehi, D.J. Kalantari, and A. Goshtasbi, Conf. Optoelectron. Microelectron. 79, 125 (2006).Google Scholar
  13. 13.
    A. Salehi, A. Nikfarjam, and D.J. Kalantari, Sens. Actuators B Chem. 113, 419 (2006).CrossRefGoogle Scholar
  14. 14.
    J.R. Mac Donald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (New York: Wiley, 1987), p. 339.Google Scholar
  15. 15.
    E.E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications (New York: Wiley, 2005), p. 616.CrossRefGoogle Scholar
  16. 16.
    Y.S. Milovanov, I.V. Gavrilchenko, V.Y. Gayvoronsky, G.V. Kuznetsov, and V.A. Skryshevsky, J. Nanoelectron. Optoelectron. 9, 432 (2014).CrossRefGoogle Scholar
  17. 17.
    V.A. Skryshevsky, YuS Milovanov, I.V. Gavrilchenko, S.I. Tiagulskyi, A.V. Rusavsky, V.S. Lysenko, and A.N. Nazarov, Phys. Status Solidi A 212, 1941 (2015).CrossRefGoogle Scholar
  18. 18.
    V.P. Makhnij, I.I. German, and V.M. Sklarchuk, Telecommun. Radio Eng. 74, 1467 (2015).CrossRefGoogle Scholar
  19. 19.
    H. Föll, S. Langa, J. Carstensen, M. Christophersen, and I.M. Tiginyanu, Adv. Mater. 15, 183 (2003).CrossRefGoogle Scholar
  20. 20.
    M. Rei Vilar, J. El Beghdadi, F. Debontridder, R. Artzi, R. Naaman, A.M. Ferraria, and A.M. Botelho do Rego, Surf. Interface Anal. 37, 673 (2005).CrossRefGoogle Scholar
  21. 21.
    N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, Phys. Status Solidi B 247, 955 (2010).Google Scholar
  22. 22.
    C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B. 48, 11024 (1993).CrossRefGoogle Scholar
  23. 23.
    A. Gudino-Martinez, E. Rosendo, M.A. Vidal, H. Navarro-Contreras, and M. Rojas-Lopez, J. Vac. Sci. Technol. A 17, 624 (1999).CrossRefGoogle Scholar
  24. 24.
    M. Rojas-Lopez, M.A. Vidal, H. Navarro-Contreras, M. Gracia-Jimenez, E. Gomez, and R. Silva-Gonzalez, J. Appl. Phys. 87, 1270 (2000).CrossRefGoogle Scholar
  25. 25.
    Y. Zhu and C. Ding, J. Eur. Ceram. Soc. 20, 127 (2000).CrossRefGoogle Scholar
  26. 26.
    S.S. Nalimova, I.E. Kononova, V.A. Moshnikov, D.T. Dimitrov, N.V. Kaneva, L.K. Krasteva, S.A. Syuleyman, A.S. Bojinova, K.I. Papazova, and A.T. Georgieva, Bulg. Chem. Commun. 49, 121 (2017).Google Scholar
  27. 27.
    G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, Sensors 10, 5469 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of High TechnologiesTaras Shevchenko National University of KyivKievUkraine
  2. 2.Kremenchuk Mykhailo Ostrohradskyi National UniversityKremenchukUkraine

Personalised recommendations