Advertisement

Improving the Thermoelectric Performance of Tetrahedrally Bonded Quaternary Selenide Cu2CdSnSe4 Using CdSe Precipitates

  • Ranita BasuEmail author
  • Srikanth Mandava
  • Anil Bohra
  • Shovit Bhattacharya
  • Ranu Bhatt
  • Sajid Ahmad
  • Kaustava Bhattacharyya
  • Soumen Samanta
  • A. K. Debnath
  • Ajay Singh
  • D. K. Aswal
  • K. P. Muthe
  • S. C. Gadkari
Article

Abstract

The creation of a microstructure that allows electron transport while blocking phonons is considered to be ideal for improving the performance of thermoelectric materials. Various thermoelectric materials exhibiting high figure of merit due to decreased thermal conductivity based on a complex crystal structure and the creation of secondary phases that result in coherent interfaces with the matrix have been reported recently. We report herein a Cu2CdSnSe4–CdSe composite that exhibits low thermal conductivity (∼ 0.56 W m−1 K−1), resulting in high thermoelectric figure of merit (ZT) of ∼ 0.65 (at 725 K). The extremely low thermal conductivity of the composite is attributed to scattering of a wide spectrum of phonons at (1) coherent interfaces between the Cu2CdSnSe4 matrix and CdSe precipitates, (2) the multiple elements and complex crystal structure of Cu2CdSnSe4, and (3) nanovoids formed due to vaporization of Cd during hot pressing at 1073 K. In addition to the improved ZT, the compatibility factor of this composite material is very close to that of p-type Bi2Se3 at around 573 K, suggesting its importance for the development of segmented thermoelectric power generators for use in the intermediate temperature range with the promise of high efficiency.

Graphical Abstract

Keywords

Thermal conductivity coherent interface compatibility factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. Virendra Kumar, SO/F, RTDD, BARC and Dr. Nilanjal Misra, SO/E, RTDD BARC for help with TGA and DSC measurements.

References

  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  3. 3.
    D.M. Rowe, Handbook on thermoelectric (Boca Raton, FL: CRC Press, 1996).Google Scholar
  4. 4.
    Q. Chen, Y. Yan, H. Zhan, W. Yao, Y. Chen, J. Dai, X. Sun, and X. Zhou, J. Materiomics 2, 179 (2016).CrossRefGoogle Scholar
  5. 5.
    R. Chetty, A. Bali, and R.C. Mallick, Intermetallics 72, 17 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Ahmad, A. Singh, A. Bohra, R. Basu, S. Bhattacharya, R. Bhatt, K.N. Meshram, M. Roy, S.K. Sarkar, Y. Hayakawa, A.K. Debnath, D.K. Aswal, and S.K. Gupta, Nano Energy 27, 282 (2016).CrossRefGoogle Scholar
  7. 7.
    D.K. Aswal, R. Basu, and A. Singh, Energy Conv. Manag. 114, 50 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Bathula, M. Jayasimdhari, B. Gahtori, N.K. Singh, K.A. Srivastva, and A. Dhar, Nanoscale 7, 12474 (2015).CrossRefGoogle Scholar
  9. 9.
    M.L. Liu, I.W. Chen, F.Q. Huang, and L.D. Chen, Adv. Mater. 21, 3808 (2009).CrossRefGoogle Scholar
  10. 10.
    M.L. Liu, F.Q. Huang, L.D. Chen, and I.W. Chen, Appl. Phys. Lett. 94, 202103 (2009).CrossRefGoogle Scholar
  11. 11.
    X.Y. Shi, F.Q. Huang, M.L. Liu, and L.D. Chen, Appl. Phys. Lett. 94, 122103 (2009).CrossRefGoogle Scholar
  12. 12.
    Y. Dong, A.R. Khabibullin, K. Wei, J. Martin, J.R. Salvador, L.M. Moods, and G.S. Nolas, Appl. Phys. Lett. 104, 252107 (2014).CrossRefGoogle Scholar
  13. 13.
    C.P. Henrich, T.W. Day, W.G. Zeier, G.J. Snyder, and W. Tremel, J. Am. Chem. Soc. 136, 442 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Ibanez, D. Cadavid, R. Zamani, N. Garcia-Castello, V. Izquierdo-Roca, W. Li, A. Fairbrother, J.D. Prades, A. Shavel, J. Arbiol, A.P. Rodriguez, J.R. Morante, and A. Cabot, Chem. Mater. 24, 562 (2012).CrossRefGoogle Scholar
  15. 15.
    F.J. Fan, B. Yu, Y.X. Wang, Y.L. Zhu, X.J. Liu, S.H. Yu, and Z. Ren, J. Am. Chem. Soc. 133, 15910 (2011).CrossRefGoogle Scholar
  16. 16.
    D. Aldakov, A. Lefrançois, and P. Reiss, J. Mater. Chem. C 1, 3756 (2013).CrossRefGoogle Scholar
  17. 17.
    C. Rincon, M. Quintero, E. Moreno, Ch Power, E. Quinter, J.A. Henao, and M.A. Macias, Superlatt. Microstruct 88, 99 (2015).CrossRefGoogle Scholar
  18. 18.
    F.S. Liu, J.X. Zheng, M.J. Huang, L.P. He, W.Q. Ao, F. Pan, and J.Q. Li, Sci. Rep. 4, 5774 (2014).CrossRefGoogle Scholar
  19. 19.
    D. Briggs and M. Seah, Practical surface analysis, Auger and X-ray photoelectron spectroscopy (New York: Wiley, 1990).Google Scholar
  20. 20.
    Z. Wang and K. Finkelstein, Appl. Phys. Lett. 90, 113115 (2007).CrossRefGoogle Scholar
  21. 21.
    M.G. Bawendi, A.R. Kortan, M.L. Steigerwald, and L.E. Brus, J. Chem. Phys. 91, 7282 (1989).CrossRefGoogle Scholar
  22. 22.
    S.H. Tolbert and A.P. Alivisatos, J. Chem. Phys. 102, 4642 (1995).CrossRefGoogle Scholar
  23. 23.
    M. Himmrich and H. Haeuseler, Spectr. Chim. Acta A 47, 933 (1991).CrossRefGoogle Scholar
  24. 24.
    D.M. Rowe and C.M. Bhandari, Modern thermoelectrics (Reston: Reston, 1983).Google Scholar
  25. 25.
    W.G. Zeier, A.L. Alonde, Z.M. Gibbs, C.P. Heinrich, M. Panthöfer, G.J. Snyder, and W. Tremel, J. Am. Chem. Soc. 133, 15910 (2011).CrossRefGoogle Scholar
  26. 26.
    Y. Dong, W. Hsin, and G.S. Nolas, Phys. Status Solidi RRL 8, 61 (2014).CrossRefGoogle Scholar
  27. 27.
    D.M. Heinz and E. Banks, J. Chem. Phys. 24, 391 (1956).CrossRefGoogle Scholar
  28. 28.
    A. Burger and M. Roth, J. Cryst. Growth 67, 507 (1984).CrossRefGoogle Scholar
  29. 29.
    E. Flage-Larsen and Ø. Prytz, Appl. Phys. Lett. 99, 202108 (2011).CrossRefGoogle Scholar
  30. 30.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar
  31. 31.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).CrossRefGoogle Scholar
  32. 32.
    G.J. Snyder, Appl. Phys. Lett. 84, 2436 (2004).CrossRefGoogle Scholar
  33. 33.
    V.P. Kumar, E. Guilmeau, B. Raveau, and V. Caignaert, J. Appl. Phys. 118, 155101 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ranita Basu
    • 1
    Email author
  • Srikanth Mandava
    • 2
  • Anil Bohra
    • 1
  • Shovit Bhattacharya
    • 1
  • Ranu Bhatt
    • 1
  • Sajid Ahmad
    • 3
    • 4
  • Kaustava Bhattacharyya
    • 5
  • Soumen Samanta
    • 1
  • A. K. Debnath
    • 1
  • Ajay Singh
    • 1
    • 4
  • D. K. Aswal
    • 1
    • 6
  • K. P. Muthe
    • 1
  • S. C. Gadkari
    • 1
  1. 1.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Guru Gobind Singh Indraprastha UniversityNew DelhiIndia
  3. 3.Nuclear Research LaboratoryAstrophysical Sciences Division, Bhabha Atomic Research CentreSrinagarIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia
  5. 5.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  6. 6.CSIRNational Physical LaboratoryNew DelhiIndia

Personalised recommendations