Performance Analysis of a Functionally Graded Thermoelectric Element with Temperature-Dependent Material Properties

  • Chengjian Ju
  • Guansuo DuiEmail author
  • Christopher George Uhl
  • Liangliang Chu
  • Xueqiang Wang
  • Yaling Liu
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules


A concept of functionally graded thermoelectric materials (FGTEMs) with graded material properties is proposed, in which the material properties are both temperature and spatially dependent. In this paper, we study the performance of a functionally graded thermoelectric (TE) element, including the temperature field, heat flux, power output, and energy conversion efficiency. The results suggest that it is necessary to take into account the temperature-dependent material properties to analyze the performance of functionally graded TE device accurately. Meanwhile, the data show that there is a significant increment in the power output and energy conversion efficiency if proper material property gradients are achieved. Additionally, the results indicate that thermal conductivity has a considerable influence on the temperature field and heat flux distribution, while the Seebeck coefficient plays a critical role in the power output and efficiency of energy conversion. In order to validate the proposed model, it was applied to an experimental case of a functionally graded bismuth antimony TE couple where the numerical results showed good agreement with the experimental data.


Functionally graded thermoelectric materials energy conversion efficiency temperature and spatially dependent numerical method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No. 11772041). This work was also supported by the China Scholarship Council (201707090036).


  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  3. 3.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, Chapter 1, ed. D.M. Rowe (New York: Taylor & Francis, 2006).Google Scholar
  4. 4.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Su, T. Liu, Y. Wang, X. Chen, J. Wang, and J. Chen, Appl. Energy 120, 16 (2014).CrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).CrossRefGoogle Scholar
  7. 7.
    C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).CrossRefGoogle Scholar
  8. 8.
    K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Adv. Energy Mater. 1, 713 (2011).CrossRefGoogle Scholar
  9. 9.
    R. Al Rahal Al Orabi, J. Hwang, C.C. Lin, R. Gautier, B. Fontaine, W. Kim, J.S. Rhyee, D. Wee, and M. Fornari, Chem. Mater. 29, 612 (2017).CrossRefGoogle Scholar
  10. 10.
    G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
  11. 11.
    B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, and R.A. Segalman, Nat. Rev. Mater. 1, 16050 (2016).CrossRefGoogle Scholar
  12. 12.
    T.T. Wallace, Z.H. Jin, and J. Su, J. Electron. Mater. 45, 2142 (2016).CrossRefGoogle Scholar
  13. 13.
    E. Hazan, O. Ben-Yehuda, N. Madar, and Y. Gelbstein, Adv. Energy Mater. 5, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 391, 256 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Wang, Y. Wang, S. Su, and J. Chen, Energy 121, 427 (2017).CrossRefGoogle Scholar
  16. 16.
    V.L. Kuznetsov, Thermoelectrics Handbook: Macro to Nano, Chapter 38, ed. D.M. Rowe (New York: Taylor & Francis, 2006).Google Scholar
  17. 17.
    J. Schilz, L. Helmers, W.E. Müller, and M. Niino, J. Appl. Phys. 83, 1150 (1998).CrossRefGoogle Scholar
  18. 18.
    E. Müller, Č. Drašar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003).CrossRefGoogle Scholar
  19. 19.
    L. Xin, S. Yang, D. Zhou, and G. Dui, Compos. Struct. 135, 74 (2016).CrossRefGoogle Scholar
  20. 20.
    Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, and L. Chen, Energy Environ. Sci. 10, 956 (2017).CrossRefGoogle Scholar
  21. 21.
    K. Zabrocki, E. Müller, and W. Seifert, J. Electron. Mater. 39, 1724 (2010).CrossRefGoogle Scholar
  22. 22.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).CrossRefGoogle Scholar
  23. 23.
    Z. Dashevsky, S. Shusterman, A. Horowitz, and M.P. Dariel, MRS Online Proc. Libr. Arch. 545, 513 (1998).CrossRefGoogle Scholar
  24. 24.
    Z.H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).CrossRefGoogle Scholar
  25. 25.
    Z. Bian and A. Shakouri, Appl. Phys. Lett. 89, 212101 (2006).CrossRefGoogle Scholar
  26. 26.
    Z.H. Jin, T.T. Wallace, R.J. Lad, and J. Su, J. Electron. Mater. 43, 308 (2014).CrossRefGoogle Scholar
  27. 27.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
  28. 28.
    J. Sui, J. Shuai, Y. Lan, Y. Liu, R. He, D. Wang, Q. Jie, and Z. Ren, Acta Mater. 87, 266 (2015).CrossRefGoogle Scholar
  29. 29.
    A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Mat. Sci. Eng. R 97, 1 (2015).CrossRefGoogle Scholar
  30. 30.
    C. Ju, G. Dui, H.H. Zheng, and L. Xin, Energy 124, 249 (2017).CrossRefGoogle Scholar
  31. 31.
    D. Wee, Energy Convers. Manag. 52, 3383 (2011).CrossRefGoogle Scholar
  32. 32.
    S. Su, T. Liu, J. Wang, and J. Chen, Energy 70, 79 (2014).CrossRefGoogle Scholar
  33. 33.
    H.S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. 112, 8205 (2015).CrossRefGoogle Scholar
  34. 34.
    T. Zhang, J. Electron. Mater. 44, 3612 (2015).CrossRefGoogle Scholar
  35. 35.
    G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013).CrossRefGoogle Scholar
  36. 36.
    O. Appel, T. Zilber, S. Kalabukhov, and Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015).CrossRefGoogle Scholar
  37. 37.
    B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky, and M.P. Dariel, J. Electron. Mater. 39, 2165 (2010).CrossRefGoogle Scholar
  38. 38.
    J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).CrossRefGoogle Scholar
  39. 39.
    J. Peng, L. Fu, Q. Liu, M. Liu, J. Yang, D. Hitchcock, M. Zhou, and J. He, J. Mater. Chem. A 2, 73 (2014).CrossRefGoogle Scholar
  40. 40.
    W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, and T.M. Tritt, Acta Mater. 58, 4705 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Chengjian Ju
    • 1
  • Guansuo Dui
    • 1
    Email author
  • Christopher George Uhl
    • 2
  • Liangliang Chu
    • 1
  • Xueqiang Wang
    • 1
  • Yaling Liu
    • 2
    • 3
  1. 1.Institute of MechanicsBeijing Jiaotong UniversityBeijingChina
  2. 2.Department of BioengineeringLehigh UniversityBethlehemUSA
  3. 3.Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemUSA

Personalised recommendations