Enhanced Energy Storage Properties of (1 − x)PLZST-xBiYO3 Ceramics

  • Meng Wei
  • Zhangdong Tang
  • Wenjun Wang
  • Hao Yu
  • Hongwei Chen
  • Jihua ZhangEmail author
  • Wanli Zhang


In this research, (1 − x)PLZST-xBiYO3 (x = 0–0.05) was prepared by a traditional solid-state process. The space structures of (1 − x)PLZST-xBiYO3 samples changed from hexagonal symmetry for x < 0.01, to monoclinic symmetry for x ≥ 0.01. Dielectric permittivity increased first and then decreased with the increase in BiYO3 content. The relaxor behavior of PLZST was disrupted slightly by BiYO3 doping. Then the local defects were created by BiYO3 doping, which formed weak couplings. The permittivity and maximum polarization were improved with the increase of BiYO3 content. When x = 0.01, Pm achieved the maximum of 9.02 μC/cm2 with an energy efficiency of 86.1%, which also exhibited the highest energy density, 0.679 J/cm3, in (1 − x)PLZST-xBiYO3 ceramics.


Relaxor behavior dielectric properties weak coupling energy storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (No. ICEM2015-4002) and the China Postdoctoral Science Foundation (No. 2018M633343).


  1. 1.
    J. Hammon, S.K. Lam, and S. Pomeroy, in Pulsed Power Conference (1995), pp. 429–434.Google Scholar
  2. 2.
    M.M. Kekez, in Pulsed Power Plasma Science (2001), pp. 1027–1030.Google Scholar
  3. 3.
    J. Liu, J. Zhang, M. Wei, Z. Yao, H. Chen, and C. Yang, J. Mater. Sci. Mater. Electron. 27, 7680 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Huang, J. Zhang, H. Yu, M. Wei, H. Chen, and C. Yang, Ferroelectrics 510, 8 (2017).CrossRefGoogle Scholar
  5. 5.
    P. Zhang, M. Wei, K. Wu, H. Chen, and J. Zhang, J. Mater. Sci. Mater. Electron. 29, 1 (2018).Google Scholar
  6. 6.
    X. Dong, H. Chen, M. Wei, K. Wu, and J. Zhang, J. Alloys Compd. 744, 721 (2018).CrossRefGoogle Scholar
  7. 7.
    Y. Zheng, J. Zhang, M. Wei, X. Dong, J. Huang, K. Wu, and H. Chen, J. Mater. Sci. Mater. Electron. 47, 2673 (2018).Google Scholar
  8. 8.
    X. Hao, J. Zhai, L.B. Kong, and Z. Xu, ProMater Sci. 63, 1 (2014).Google Scholar
  9. 9.
    X. Hao, Y. Zhao, S. An, and A. Belik, J. Am. Ceram. Soc. 98, 361 (2015).CrossRefGoogle Scholar
  10. 10.
    Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, and G. Wang, Appl. Phys. Lett. 106, 262901 (2015).CrossRefGoogle Scholar
  11. 11.
    X. Wang, J. Shen, T. Yang, Z. Xiao, and Y. Dong, J. Mater. Sci. Mater. Electron. 26, 9200 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Yu, J. Zhang, M. Wei, J. Huang, H. Chen, and C. Yang, J. Mater. Sci. Mater. Electron. 28, 832 (2017).CrossRefGoogle Scholar
  13. 13.
    L. Zhang, S. Jiang, B. Fan, and G. Zhang, Ceram. Int. 41, 1139 (2015).CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin, and J. Chen, Ceram. Int. 41, 3030 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Chen, Y. Li, Q. Zhang, and X. Hao, Ceram. Int. 42, 12537 (2016).CrossRefGoogle Scholar
  16. 16.
    X. Wang, J. Shen, T. Yang, Y. Dong, and Y. Liu, J. Alloys Compd. 655, 309 (2016).CrossRefGoogle Scholar
  17. 17.
    X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang, Q. Xu, M. Cao, and S. Troiler-McKins, J. Am. Ceram. Soc. 97, 1797 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Pu, and P. Zhang, J. Alloys Compd. 653, 596 (2015).CrossRefGoogle Scholar
  19. 19.
    H.Y. Guo, C. Lei, and Z.G. Ye, Appl. Phys. Lett. 92, 172901 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Liu, H. Hao, Y. Zhen, T. Wang, D. Zhou, H. Liu, M. Cao, and Z. Yao, J. Eur. Ceram. Soc. 35, 2303 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Schileo, A. Feteira, K. Reichmann, M. Li, and D.C. Sinclair, J. Eur. Ceram. Soc. 35, 2479 (2015).CrossRefGoogle Scholar
  24. 24.
    Z. Shen, X. Wang, B. Luo, and L. Li, J. Mater. Chem. A 3, 18146 (2015).CrossRefGoogle Scholar
  25. 25.
    T. Badapanda, V. Senthil, D.K. Rana, S. Panigrahi, and S. Anwar, J. Electroceram. 29, 117 (2012).CrossRefGoogle Scholar
  26. 26.
    A. Simon, J. Ravez, and M. Maglione, Solid State Sci. 7, 925 (2005).CrossRefGoogle Scholar
  27. 27.
    F. Bahri, A. Simon, H. Khemakhem, and J. Ravez, Phys. Status Solidi 184, 459 (2001).CrossRefGoogle Scholar
  28. 28.
    G. Hu, B. Xu, X. Yan, J. Li, F. Gao, Z. Liu, Y. Zhang, and H. Sun, J. Mater. Sci. Mater. Electron. 25, 1817 (2014).CrossRefGoogle Scholar
  29. 29.
    L. Cui, Y.D. Hou, S. Wang, C. Wang, and M.K. Zhu, J. Appl. Phys. 107, 054105 (2010).CrossRefGoogle Scholar
  30. 30.
    W. Chen, X. Yao, and X. Wei, Appl. Phys. Lett. 90, 182902 (2007).CrossRefGoogle Scholar
  31. 31.
    B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, and H. Huang, Adv. Electron. Mater. 1, 1500052 (2015).CrossRefGoogle Scholar
  32. 32.
    L.E. Cross, Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
  33. 33.
    G.A. Samara, J. Phys. Condens. Mater. 15, R367 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Meng Wei
    • 1
  • Zhangdong Tang
    • 2
  • Wenjun Wang
    • 3
  • Hao Yu
    • 1
  • Hongwei Chen
    • 1
  • Jihua Zhang
    • 1
    Email author
  • Wanli Zhang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.China Aerospace Components Engineering CenterChina Academy of Space TechnologyBeijingChina
  3. 3.Chengdu Micro-Tech Science and Technology Company LtdChengduPeople’s Republic of China

Personalised recommendations