Advertisement

Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification

  • Linmeng Wang
  • Shan Jia
  • Xiuquan GuEmail author
  • Yulong Zhao
  • Yinghuai Qiang
Article
  • 1 Downloads

Abstract

In this work, porous BiVO4 thin films were deposited on the FTO glass through a spin-coating deposition method and their photoelectrochemical (PEC) properties were investigated. Further, the BiVO4 thin film was modified with a NiMoO4 thin layer for enhancing its PEC activity. It is demonstrated that the applied bias photo-to-current conversion efficiency is increased by 63% after a surface modification, which is ascribed to both the formation of a pn junction and the suppressed carrier recombination rate by terms of the electrochemical impedance spectroscopy. Finally, a schematic band model is also proposed to clarify the charge carrier transfer mechanism which is responsible for the enhanced PEC performance.

Keywords

NiMoO4 BiVO4 photoelectrochemical water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is financially supported by Postgraduate Research and Practice Program of Education and Teaching Reform of CUMT (No. YJSJG-2018-042).

References

  1. 1.
    S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, and J. Tang, Energy Environ. Sci. 8, 731 (2015).CrossRefGoogle Scholar
  2. 2.
    C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, and J. Tang, Chem. Soc. Rev. 46, 4645 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Li and N. Wu, Catal. Sci. Technol. 5, 1360 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  6. 6.
    J. Su, L. Guo, N. Bao, and C.A. Grimes, Nano Lett. 11, 1928 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, Adv. Energy Mater. 6, 1501645 (2016).CrossRefGoogle Scholar
  8. 8.
    X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, ACS Appl. Mater. Interfaces. 6, 12005 (2014).CrossRefGoogle Scholar
  9. 9.
    Q. Wu, P. Diao, J. Sun, D. Xu, T. Jin, and M. Xiang, J. Mater. Chem. A 3, 18991 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Wang, M. Wei, X. Gu, Y. Zhao, and Y. Qiang, J. Electron. Mater. 47, 6540 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. Park, K.J. McDonald, and K.-S. Choi, Chem. Soc. Rev. 42, 2321 (2013).CrossRefGoogle Scholar
  12. 12.
    S.J.A. Moniz, J. Zhu, and J. Tang, Adv. Energy Mater. 4, 1301590 (2014).CrossRefGoogle Scholar
  13. 13.
    J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang, Y.H. Lee, D.S. Kim, Y. Jun, and J.S. Lee, ACS Nano 9, 11820 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, and C. Li, Phys. Chem. Chem. Phys. 15, 4589 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, and B. Zhou, Appl. Catal. B Environ. 204, 127 (2017).CrossRefGoogle Scholar
  16. 16.
    T.W. Kim and K.S. Choi, Science 343, 990 (2014).CrossRefGoogle Scholar
  17. 17.
    J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, and J.S. Lee, Nat. Commun. 7, 13380 (2016).CrossRefGoogle Scholar
  18. 18.
    F. Wu, Q. Liao, F. Cao, L. Li, and Y. Zhang, Nano Energy 34, 8 (2017).CrossRefGoogle Scholar
  19. 19.
    S. Peng, L. Li, H.B. Wu, S. Madhavi, and X.W. Lou, Adv. Energy Mater. 5, 1401172 (2015).CrossRefGoogle Scholar
  20. 20.
    F. Nti, D.A. Anang, and J.I. Han, J. Alloys Compd. 742, 342 (2018).CrossRefGoogle Scholar
  21. 21.
    L. Wang, X. Gu, Y. Zhao, M. Wei, Y. Qiang, and Y. Zhao, J. Mater. Sci.: Mater. Electron. 29, 19278 (2018).Google Scholar
  22. 22.
    H.L. Tan, X. Wen, R. Amal, and Y.H. Ng, J. Phys. Chem. Lett. 7, 1400 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, Energy Environ. Sci. 6, 347 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch, and A. Fischer, Sustain. Energy Fuels 1, 1830 (2017).CrossRefGoogle Scholar
  25. 25.
    X. Wang, J. Xie, and C.M. Li, J. Mater. Chem. A 3, 1235 (2015).CrossRefGoogle Scholar
  26. 26.
    X. Wan, F. Niu, J. Su, and L. Guo, Phys. Chem. Chem. Phys. 18, 31803 (2016).CrossRefGoogle Scholar
  27. 27.
    H.P. Maruska and A.K. Ghosh, Sol. Energy 20, 443 (1978).CrossRefGoogle Scholar
  28. 28.
    V. Umapathy, P. Neeraja, A. Manikandan, and P. Ramu, Trans. Nonferrous Metals Soc. China 27, 1785 (2017).CrossRefGoogle Scholar
  29. 29.
    L. Wang, X. Gu, Y. Zhao, M. Wei, C. Huang, and Y. Qiang, Appl. Surf. Sci. 448, 126 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Linmeng Wang
    • 1
  • Shan Jia
    • 1
  • Xiuquan Gu
    • 1
    Email author
  • Yulong Zhao
    • 1
  • Yinghuai Qiang
    • 1
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations