Advertisement

Sliding Mode Control for MPPT of a Thermogenerator

  • Seddik Benhadouga
  • Mounir Meddad
  • Adil EddiaiEmail author
  • Djamel Boukhetala
  • Riad Khenfer
Article
  • 1 Downloads

Abstract

This paper reports a practical implementation for maximum power point tracking (MPPT) of a thermoelectric generator (TEG) module using sliding mode control. The principal goal is to apply a robust technique of control to ensure maximum power transfer towards the load through a boost converter. On the one hand, the proposed technique improves rapidly the effect of load variation, and on the other hand, it increases the overall performance of the system. The MPPT control is modeled in Simulink/Matlab with the theoretical Models of a TEG module and a boost converter. Simulation results give the sliding mode control performance under different temperature gradients. Hardware based on an Arduino card is implemented, where the experimental results are presented and analyzed. The experimental results are compared with simulation data where a good agreement is observed. Finally, the results show the effectiveness and the robustness of sliding mode control.

Keywords

Thermogenerator MPPT control sliding mode control prototype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Paraskevas and E. Koutroulis, Energy. Convers. Manag. 108, 355 (2016).CrossRefGoogle Scholar
  2. 2.
    J.P. Im, S.W. Wang, S.T. Ryu, and G.H. Cho, IEEE J. Solid-State Circuits 47, 3055 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Kim and C. Kim, IEEE Trans. Power Electron. 28, 3827 (2013).CrossRefGoogle Scholar
  4. 4.
    N. Phillip, O. Maganga, K.J. Burnham, M.A. Ellis, S. Robinson, J. Dunn, and C. Rouaud, J. Electron. Mater. 42, 1900 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Dalola, M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, IEEE Trans. Instrum. Meas. 58, 99 (2009).CrossRefGoogle Scholar
  6. 6.
    P.S. Weng, H.Y. Tang, P.C. Ku, and L.H. Lu, IEEE J. Solid-State Circuits 48, 1031 (2013).CrossRefGoogle Scholar
  7. 7.
    E. Brownell and M. Hodes, IEEE Trans. Comp. Packag. Manuf. Technol. 4, 612 (2014).CrossRefGoogle Scholar
  8. 8.
    K. Dahech, M. Allouche, T. Damak, and F. Tadeo, Electr. Power Syst. Res. 143, 182 (2017).CrossRefGoogle Scholar
  9. 9.
    D. Galayko and P. Basset, in Proceedings of Power MEMS 2008 + microEMS, Sendai, Japan, 2008, pp. 9–12.Google Scholar
  10. 10.
    J.D. Park, H. Lee, and M. Bond, Energy Convers. Manag. 86, 233 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Montecucco and A.R. Knox, IEEE Trans. Power Electron. 30, 828 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 687 (2006).CrossRefGoogle Scholar
  13. 13.
    C.E. Kinsella, S.M. O’Shaughnessy, M.J. Deasy, M. Duffy, and A.J. Robinson, Appl. Energy 114, 80 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Benahdouga, R. Khenfer, M. Meddad, A. Eddiai, and K. Benkhouja, Mol. Cryst. Liq. Cryst. 628, 41 (2016).CrossRefGoogle Scholar
  15. 15.
    S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).CrossRefGoogle Scholar
  16. 16.
    D. Dai, Y. Zhou, and J. Liu, Renew. Energy 36, 3530 (2011).CrossRefGoogle Scholar
  17. 17.
    S.F. Tie and C.W. Tan, Renew. Sustain. Energy Rev. 20, 82 (2013).CrossRefGoogle Scholar
  18. 18.
    K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, and N.H. Shuvo, Renew. Sustain. Energy Rev. 24, 499 (2013).CrossRefGoogle Scholar
  19. 19.
    B.D.O. Anderson and J.B. Moore, Linear Optimal Control (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1971).Google Scholar
  20. 20.
    Y. Yang, X.J. Wei, and J. Liu, J. Phys. D Appl. Phys. 40, 5790 (2007).CrossRefGoogle Scholar
  21. 21.
    C. Wu, Appl. Therm. Eng. 16, 63 (1996).CrossRefGoogle Scholar
  22. 22.
    Y.Y. Hsiao, W.C. Chang, and S.L. Chen, Energy 35, 1447 (2010).CrossRefGoogle Scholar
  23. 23.
    X. Gou, H. Xiao, and S. Yang, Appl. Energy 87, 3131 (2010).CrossRefGoogle Scholar
  24. 24.
    R. Yang, G. Chen, A.R. Kumar, G.J. Snyder, and J.P. Fleurial, Energy Convers. Manag. 46, 1407 (2005).CrossRefGoogle Scholar
  25. 25.
    K. Yazawa and A. Shakouri, Environ. Sci. Technol. 45, 7548 (2011).CrossRefGoogle Scholar
  26. 26.
    D. Nemir and J. Beck, J. Electron. Mater. 39, 1897 (2010).CrossRefGoogle Scholar
  27. 27.
    L. Janak, Z. Ancik, and Z. Hadas, Mechatronics 2013, ed. T. Brˇezina and R. Jablonski (Cham: Springer, 2014), pp. 265–271.Google Scholar
  28. 28.
    S. Benahdouga, D. Boukhetala, and F. Boudjema, Electr. Power Energy Syst. 43, 1081 (2012).CrossRefGoogle Scholar
  29. 29.
    J. Ghazanfari and M.M. Farsangi, Iran. J. Electric. Electron. Eng. 9, 189 (2013).Google Scholar
  30. 30.
    A. Prabhakaran and A.S. Mathew, Int. Res. J. Eng. Technol. 3, 1600 (2016).Google Scholar
  31. 31.
    D. Rekioua, A.Y. Achour, and T. Rekioua, Energy Proc. 36, 219 (2013).CrossRefGoogle Scholar
  32. 32.
    T.H. Kwan and X. Wu, Energy Proc. 105, 14 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Université Mohamed El Bachir El Ibrahimi de Bordj Bou ArreridjBordj Bou ArreridjAlgeria
  2. 2.Laboratoire d’Automatique de Sétif (LAS)Université Ferhat Abass de SetifSétifAlgeria
  3. 3.Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M’sikUniversité Hassan II de CasablancaCasablancaMorocco
  4. 4.Laboratoire de Commande des Processus (LCP)ENPEl HarrachAlgeria

Personalised recommendations