Advertisement

Effect of Isovalent Substitution on Microwave Dielectric Properties of Mg4Nb2O9 Ceramics

  • Jeong Hoon Kim
  • Eung Soo KimEmail author
Article

Abstract

The dependence of microwave dielectric properties on the isovalent substitution of (Sn 1/2 4+ W1/26+)5+ (electronegativity difference from O2−, X = 2.16) and (Ti 1/2 4+ W1/26+)5+ (X = 1.95), with higher electronegativity differences than Nb5+ (X = 1.6) at Nb5+-sites of Mg4Nb2O9 ceramics was investigated. As expected from the electronegativity values, the quality factor of the specimens reached the highest value (274000 GHz) at X = 0.05 because Mg4Nb1.95(Sn1/2W1/2)0.05 O9 had a higher average bond valence than the other specimens. The dielectric constants (K) of the specimens were affected by the theoretical dielectric polarizability. The K value of specimens decreased with increasing x because Nb5+ has a higher dielectric polarizability (3.97 Å3) than the substitution ions such as (Sn1/2W1/2)5+ (3.015 Å3) and (Ti1/2W1/2)5+ (3.065 Å3). The effects of the structural characteristics with isovalent substitution on the microwave dielectric properties are also discussed.

Keywords

Microwave dielectric properties corundum structure bond valence electronegativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2015R1D1A1A09061528).

References

  1. 1.
    D.S. Patel, Int. J. Res. Dev. Technol. 4, 26 (2015).Google Scholar
  2. 2.
    R.J. Cava, J. Mater. Chem. 11, 54 (2001).CrossRefGoogle Scholar
  3. 3.
    S.-O. Yoon, D.-K. Choi, J.-H. Oh, and S. Kim, J. Korean Ceram. Soc. 55, 364 (2018).CrossRefGoogle Scholar
  4. 4.
    H.J. Jo and E.S. Kim, Ceram. Int. 42, 5479 (2016).CrossRefGoogle Scholar
  5. 5.
    S.H. Kim and E.S. Kim, Ceram. Int. 42, 15035 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Kan and H. Ogawa, J. Alloys Compd. 364, 249 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, J. Eur. Ceram. Soc. 27, 2977 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Kan and H. Ogawa, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, IEEE. 519 (2007).Google Scholar
  9. 9.
    H. Ogawa, H. Taketani, A. Kan, A. Fujita, and G. Zouganelis, J. Eur. Ceram. Soc. 25, 2859 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Kan, H. Ogawa, A. Yokoi, and H. Osato, Jpn. J. Appl. Phys. 42, 6154 (2003).CrossRefGoogle Scholar
  11. 11.
    H.T. Wu and L.X. Li, J. Sol-Gel Sci. Tech. 58, 48 (2011).CrossRefGoogle Scholar
  12. 12.
    J.H. Kim and E.S. Kim, Ceram. Int. 43, S339 (2017).CrossRefGoogle Scholar
  13. 13.
    L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).CrossRefGoogle Scholar
  14. 14.
    T. Roisnel and J.R. Carvajal, WinPLOTR Mater. Sci. Forum 378–381, 118 (2001).CrossRefGoogle Scholar
  15. 15.
    N. Kumada, K. Taki, and N. Kinomura, Mater. Res. Bull. 37, 1017 (2000).CrossRefGoogle Scholar
  16. 16.
    T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, Microw. Symp. Dig. 87, 277 (1987).CrossRefGoogle Scholar
  17. 17.
    C.B.W. Hakki and P.D. Coleman, Microw. Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
  18. 18.
    K. Sreedhar and N.R. Pavaskar, Mater. Lett. 53, 452 (2002).CrossRefGoogle Scholar
  19. 19.
    Q. Liao, L. Li, P. Zhang, L. Cao, and Y. Han, Mater. Sci. Eng. B 176, 41 (2011).CrossRefGoogle Scholar
  20. 20.
    Y.B. Chen, Jpn. J. Appl. Phys. 51, 085804 (2012).Google Scholar
  21. 21.
    D.M. Iddles, A.J. Bell, and A.J. Moulson, J. Mat. Sci. 27, 6303 (1992).CrossRefGoogle Scholar
  22. 22.
    I.D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244–247 (1985).CrossRefGoogle Scholar
  23. 23.
    I.D. Brown and K.U. Kang, Acta Crystallogr. B 32, 1957 (1976).CrossRefGoogle Scholar
  24. 24.
    J. Li, Y. Han, T. Qiu, and C. Jin, Mater. Res. Bull. 47, 2375 (2012).CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  26. 26.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
  27. 27.
    A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).CrossRefGoogle Scholar
  28. 28.
    P. Liu, E.S. Kim and K.H. Yoon, Jpn. J. Appl. Phys. 40, 5769–5773 (2001).CrossRefGoogle Scholar
  29. 29.
    E.L. Colla, I.M. Reaney, and N Setter, J. Appl. Phys. 74, 3414 (1993).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringKyonggi UniversitySuwonKorea

Personalised recommendations