Taguchi Design of PZT-Based Piezoelectric Cantilever Beam with Maximum and Robust Voltage for Wide Frequency Range

  • Sanghyun Park
  • Hyungwoo Kim
  • Jihoon Kim
  • Tae Hee Lee
  • Su-gil ChoEmail author
Electronic Materials for Renewable Energy Applications 2018
Part of the following topical collections:
  1. 6th European Conference on Renewable Energy Systems


Piezoelectric energy harvesting—an eco-friendly technology—is gaining more interest from researchers owing to its high power density. Among the various piezoelectric types, many studies have focused on the PZT-based piezoelectric cantilever beam because it can easily achieve the resonance effect compared to other types. In real applications, however, it is not easy to match the loading frequency with the resonance frequency owing to environmental factors. This prevents the application of piezoelectric energy harvesting to real life products because the efficiency of energy extraction decreases considerably outside the resonance frequency domain. In this research, the Taguchi design, which is an effective methodology used to improve product quality without controlling any noise factors, ensures that the PZT-based piezoelectric cantilever beam can obtain robust and high output voltage over a wide frequency range. The PZT-based piezoelectric cantilever beam should be implemented using the multi-response signal-to-noise ratio of the Taguchi design method because it has the two important responses, the output voltage and its deviation. Experiments are performed to measure the output voltage of various harvesters at the resonance frequency and several other frequencies. Based on the experimental results, the Taguchi design method is implemented considering the characteristics of the responses, and an optimal design combination is selected. As a result, the selected optimal combination results in a 9.86% output voltage reduction and an 18.14% decrease in voltage deviation.


Taguchi design multi-response signal-to-noise ratio (MRSN) PZT-based piezoelectric cantilever beam piezoelectric energy harvesting harvester 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by a grant from Endowment Project of “Technology development of material handling and risk management for operation and maintenance service of offshore plant” funded by the Korea Research Institute of Ships and Ocean Engineering (PES3081).


  1. 1.
    S. Chang, Q. Li, X. Xiao, K.Y. Wong, and T. Chen, Energy Environ. Sci. 5, 9444 (2012).CrossRefGoogle Scholar
  2. 2.
    I. Neri, F. Travasso, R. Mincigrucci, H. Vocca, F. Orfei, and L. Gammatitoni, J. Intell. Mater. Syst. Struct. 23, 2095 (2012).CrossRefGoogle Scholar
  3. 3.
    Z. Lin, J. Yang, J. Zhao, N. Zhao, J. Liu, Y. Wen, and P. Li, J. Electron. Mater. 45, 3554 (2016).CrossRefGoogle Scholar
  4. 4.
    F.Y. Lee, A. Navid, and L. Pilon, Appl. Therm. Eng. 37, 30 (2012).CrossRefGoogle Scholar
  5. 5.
    F.Y. Lee, S. Goljahi, I.M. McKinley, C.S. Lynch, and L. Pilon, Smart Mater. Struct. 21, 025021 (2012).CrossRefGoogle Scholar
  6. 6.
    E. Kurt, F. Cottone, Y. Uzun, F. Orfei, M. Mattarelli, and D. Özhan, Int. J. Hydrogen Energy 42, 17813 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Li, J. Yuan, and H. Lipson, J. Appl. Phys. 109, 026104 (2011).CrossRefGoogle Scholar
  8. 8.
    C.H. Wong, Z. Dahari, A. Abdmanaf, and M.Z. Miskam, J. Electron. Mater. 44, 13 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Song, C.H. Yang, S.K. Hong, S.J. Hwang, J.H. Kim, J.Y. Choi, S.K. Ryu, and T.H. Sung, Int. J. Hydrogen Energy 41, 12563 (2016).CrossRefGoogle Scholar
  10. 10.
    C.H. Yang, Y. Song, M.S. Woo, J.H. Eom, G.J. Song, J.H. Kim, J. Kim, T.H. Lee, J.Y. Choi, and T.H. Sung, Sensor Actuator Phys. 261, 317 (2017).CrossRefGoogle Scholar
  11. 11.
    M.A. Ahmad and H.N. Alshareef, J. Electron. Mater. 40, 1477 (2011).CrossRefGoogle Scholar
  12. 12.
    P.K. Panda, B. Sahoo, M. Chandraiah, S. Raghavan, B. Manoj, J. Ramakrishna, and P. Kiran, J. Electron. Mater. 44, 4349 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, T. Wang, A. Luo, Y. Hu, X. Li, and F. Wang, Appl. Energy 212, 362 (2018).CrossRefGoogle Scholar
  14. 14.
    G. Sebald, H. Kuwano, D. Guyomar, and B. Ducharne, Smart Mater. Struct. 20, 102001 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Shahab, S. Zhao, and A. Erturk, Energy Technol. 6, 935 (2018).CrossRefGoogle Scholar
  16. 16.
    B.J. Jin, M.H. Park, T.J. Yun, I.S. Kim, K.Y. Park, Y. Kim, and H.J. Yang, J. Weld. Join. 36, 34 (2018).CrossRefGoogle Scholar
  17. 17.
    J.T. Park and N.S. Choi, Trans. KSAE 20, 77 (2012).CrossRefGoogle Scholar
  18. 18.
    J. Kim, S. Park, W. Lim, J. Jang, T.H. Lee, S.K. Hong, Y. Song, and T.H. Sung, J. Electron. Mater. 45, 3848 (2016).CrossRefGoogle Scholar
  19. 19.
    X. Liao, Q. Li, X. Yang, W. Zhang, and W. Li, Struct. Multidiscip. Optim. 35, 651 (2008).CrossRefGoogle Scholar
  20. 20.
    R. Mundry and C.L. Nunn, Am. Nat. 173, 119 (2009).CrossRefGoogle Scholar
  21. 21.
    J. Tind and M.M. Wiecek, J. Global Optim. 14, 251 (1999).CrossRefGoogle Scholar
  22. 22.
    K. Dächert, J. Gorski, and K. Klamroth, Comput. Oper. Res. 39, 2929 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Automotive EngineeringHanyang UniversitySeoulKorea
  2. 2.Offshore Industries R&BD CenterKorea Research Institute of Ships and Ocean Engineering (KRISO)Geoje-siKorea

Personalised recommendations