Complex Optical and Thermal Studies on As-Synthesized Conducting Polythiophene

  • N. S. WadatkarEmail author
  • S. A. Waghuley


A series of conducting polythiophene (PTh) samples have been synthesized using an in situ chemical oxidative polymerization technique in aqueous solution. The characterization of the as-synthesized optimized sample has been carried out by Fourier transform infrared spectroscopy, x-ray diffraction and thermogravimetric–differential thermal analysis techniques. Also, the complex optical parameters of all the as-synthesized polymeric samples have been investigated by using ultraviolet–visible spectroscopy. The as-synthesized polymeric samples exhibited absorption around 220–280 nm. The optical band gap was found to ranges from 5.06 eV to 5.24 eV. The maximum optical conductivity for the sample with a stoichiometric ratio of thiophene to FeCl3 of 70:30 wt.% was found to be 5.973 × 108 S cm−1 at 280 nm. The experimental results reveal that the thermal and optical performance of conducting PTh can be dramatically enhanced for the sample with a stoichiometric ratio of thiophene to FeCl3 of 70:30 wt.%. The improved complex optical properties of as-synthesized samples of conducting PTh validate their potential utilization in optoelectronic devices.


Polythiophene thermal analysis complex optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are very grateful to the Head, Department of Physics Sant Gadge Baba Amravati University, Amravati for providing the necessary facilities.


  1. 1.
    M. Jaymand, Prog. Polym. Sci. 38, 1287 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Azimi, M. Abbaspour, A. Fazli, H. Setoodeh, and B. Pourabbas, J. Electron. Mater. 47, 2093 (2018).CrossRefGoogle Scholar
  3. 3.
    P. Jayamurgan, V. Ponnuswamy, S. Ashokan, and T. Mahalingam, Iran. Poly. J. 22, 219 (2013).CrossRefGoogle Scholar
  4. 4.
    Y. He, W. Guo, M. Pei, G. Zhang, and J. Jiang, J. Electron. Mater. 41, 2411 (2012).CrossRefGoogle Scholar
  5. 5.
    P. Camurlu, RSC Adv. 4, 55832 (2014).CrossRefGoogle Scholar
  6. 6.
    V. Bavastrello, T.B.C. Terencio, and C. Nicolini, Polym. 52, 47 (2011).CrossRefGoogle Scholar
  7. 7.
    Z. Guo, K. Shin, A.B. Karki, D.P. Young, R.B. Kaner, and H.T. Hahn, J. Nano Res. 11, 1441 (2009).CrossRefGoogle Scholar
  8. 8.
    R.P. Tandon, M.R. Tripathy, A.K. Arora, and S. Hotchandani, Sens. Actuators B 114, 768 (2006).CrossRefGoogle Scholar
  9. 9.
    S.H. Ahn, M.Z. Czae, E.R. Kim, and H. Lee, Macromol. 34, 2522 (2001).CrossRefGoogle Scholar
  10. 10.
    H.S. Abdulla, Int. J. Electrochem. Sci. 8, 11782 (2013).Google Scholar
  11. 11.
    F. Bloisi, A. Cassinese, R. Papa, L. Vicari, and V. Califano, Thin Solid Films 516, 1594 (2008).CrossRefGoogle Scholar
  12. 12.
    X. Ma, G. Li, H. Xu, M. Wang, and H. Chen, Thin Solid Films 515, 2700 (2006).CrossRefGoogle Scholar
  13. 13.
    Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).CrossRefGoogle Scholar
  14. 14.
    X.S. Wang, Y.H. Deng, and Y.Q. Li, J. Mater. Sci. 37, 4865 (2002).CrossRefGoogle Scholar
  15. 15.
    F. Alakhras, Chem. Chem. Technol. 8, 265 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, and D.P. Amalnerkar, Mater. Chem. Phys. 61, 173 (1999).CrossRefGoogle Scholar
  17. 17.
    S.V. Kamat, S.H. Tamboli, V. Puri, R.K. Puri, J.B. Yadav, and O.S. Joo, J. Optoelectron. Adv. Mater. 12, 2301 (2010).Google Scholar
  18. 18.
    R.S. Bobade, S.V. Pakade, and S.P. Yawale, J. Non Cryst. Solids 355, 2410 (2009).CrossRefGoogle Scholar
  19. 19.
    S.R. Takpire and S.A. Waghuley, J. Electron. Mater. 44, 2807 (2015).CrossRefGoogle Scholar
  20. 20.
    D. Kelkar and A. Chourasia, Macromol. Symp. 327, 53 (2013).CrossRefGoogle Scholar
  21. 21.
    N.S. Wadatkar and S.A. Waghuley, J. Mater. Sci. Mater. Electron. 27, 10573 (2016).CrossRefGoogle Scholar
  22. 22.
    S.R.P. Gnanakan, M. Rajasekhar, and A. Subramania, Int. J. Electrochem. Sci. 4, 1289 (2009).Google Scholar
  23. 23.
    M.R. Karim, K.T. Lim, C.J. Lee, and M.S. Lee, Synth. Met. 157, 1008 (2007).CrossRefGoogle Scholar
  24. 24.
    D.S. Kelkar and A.B. Chourasia, Indian J. Phys. 86, 101 (2012).CrossRefGoogle Scholar
  25. 25.
    B. Gupta, D.S. Chauhan, and R. Prakash, Mater. Chem. Phys. 120, 625 (2010).CrossRefGoogle Scholar
  26. 26.
    S.A. Waghuley, S.M. Yenorkar, S.S. Yawale, and S.P. Yawale, Sens. Actuators B 128, 366 (2008).CrossRefGoogle Scholar
  27. 27.
    P.S. Abthagir and R. Saraswathi, Thermochim. Acta 424, 25 (2004).CrossRefGoogle Scholar
  28. 28.
    L. Joshi and R. Prakash, Mater. Lett. 65, 3016 (2011).CrossRefGoogle Scholar
  29. 29.
    S.B. Aziz, J. Electron. Mater. 45, 736 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Electron. Mater. 47, 3912 (2018).CrossRefGoogle Scholar
  31. 31.
    F.A. Jenkins and H.E. White, Fundamentals of Optics (New York: McGraw-Hill, 1957).Google Scholar
  32. 32.
    D.J. Bhagat and G.R. Dhokane, Appl. Surf. Sci. 337, 230 (2015).CrossRefGoogle Scholar
  33. 33.
    N.S. Wadatkar and S.A. Waghuley, Egypt. J. Basic Appl. Sci. 2, 19 (2015).CrossRefGoogle Scholar
  34. 34.
    A. Edukondalu, T. Sripathi, S.K. Ahmmad, S. Rahman, and K. Sivakumar, J. Electron. Mater. 46, 808 (2017).CrossRefGoogle Scholar
  35. 35.
    A.M. Shehap and D.S. Akil, Int. J. Nanoelectron. Mater. 9, 17 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment PolytechnicAmravatiIndia
  2. 2.Department of PhysicsSant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations