Advertisement

Controllable Synthesis of MoS2@TiO2 Composite Nanostructure by Anodic Oxidation-Hydrothermal Technique

  • Qimeng Sun
  • Xudong Yang
  • Jun Ma
  • Xinchuan LiuEmail author
  • Yongqian WangEmail author
Article

Abstract

MoS2@TiO2 composite nanostructure arrays consisting of thin MoS2 nanosheets on the surface of anodized TiO2 nanotube arrays were successfully synthesized with a facile anodic oxidation-hydrothermal technique. In this study, x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer and ultraviolet–visible spectroscopy (UV–Vis) were used to characterize the samples. On this basis, the photocatalytic property of MoS2@TiO2 composite nanostructure in the degradation of methylene blue was investigated. XRD results indicate that MoS2 nanosheets on the surface of anodized TiO2 nanotube arrays were in a hexagonal phase. FESEM shows that MoS2 nanosheets have a uniform distribution and low agglomeration because of the regular lamellar structure with tight arrangement. Meanwhile, the MoS2@TiO2 composite nanostructure shows the high light absorption intensity both in the ultraviolet and visible region. And the photodegradation efficiency for methylene blue is 92.10%, thus, it has potential applications in the field of photocatalysis.

Keywords

MoS2@TiO2 controllable synthesis anodic oxidation hydrothermal technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    L. Lu, J.S. Guest, C.A. Peters, X.P. Zhu, G.H. Rau, and Z.J. Ren, Nat. Sustain. 1, 750 (2018).CrossRefGoogle Scholar
  2. 2.
    S.Y. Tian, J.H. Guo, C. Zhao, Z. Peng, C.H. Gong, L.G. Yu, X.H. Liu, and J.W. Zhang, J. Nanosci. Nanotechnol. 19, 2147 (2019).CrossRefGoogle Scholar
  3. 3.
    L. Ponce-Robles, M.I. Polo-Lopez, I. Oller, J.A. Garrido-Cardenas, and S. Malato, Ecotoxicol. Environ. Saf. 166, 123 (2018).CrossRefGoogle Scholar
  4. 4.
    A.C. Sophia and E.C. Lima, Ecotoxicol. Environ. Saf. 150, 1 (2018).CrossRefGoogle Scholar
  5. 5.
    H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, and Z. Liu, Adv. Energy Mater. 6, 464 (2016).Google Scholar
  6. 6.
    A.A. Isari, A. Payan, M. Fattahi, S. Jorfi, and B. Kakavandi, Appl. Surf. Sci. 462, 549 (2018).CrossRefGoogle Scholar
  7. 7.
    C. Liu, D. Kong, P.C. Hsu, H. Yuan, H.W. Lee, Y. Liu, and P.A. Maraccini, Nat. Nanotechnol. 11, 1098 (2016).CrossRefGoogle Scholar
  8. 8.
    L.X. Song, W.R. Jing, J.J. Chen, S.R. Zhang, Y.Q. Zhu, and J. Xiong, J. Mater. Sci. 54, 3795 (2019).CrossRefGoogle Scholar
  9. 9.
    K. Liang, L. Li, and Y. Yang, ACS Energy Lett. 2, 373 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Gao, G.-D. Li, Y. Liu, H. Chen, L.L. Feng, Y. Wang, M. Yang, D. Wang, S. Wang, and X. Zou, Nanoscale. 7, 2306 (2015).CrossRefGoogle Scholar
  11. 11.
    X. Bai, Y.Y. Du, X.Y. Hu, Y.D. He, C.L. He, E.Z. Liu, and J. Fan, Appl. Catal., B 239, 204 (2018).Google Scholar
  12. 12.
    H.Y. Wang, H. Jiang, Y.J. Hu, P. Saha, Q.L. Cheng, and C.Z. Li, Chem. Eng. Sci. 174, 104 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Jayabal, G. Saranya, J. Wu, Y.Q. Liu, D.S. Geng, and X.B. Meng, J. Mater. Chem. A 5, 24540 (2017).CrossRefGoogle Scholar
  14. 14.
    W.W. Cai, X.Y. Luo, Y. Jiang, Z. Liu, J. Li, L. Ma, J. Xiong, Z.H. Yang, and H.S. Cheng, Int. J. Hydrogen Energy 43, 2026 (2018).CrossRefGoogle Scholar
  15. 15.
    X. Gao, H.B. Wu, L. Zheng, Y. Zhong, Y. Hu, and X.W.D. Lou, Chem. Int. Ed. 53, 5917 (2014).CrossRefGoogle Scholar
  16. 16.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2015).CrossRefGoogle Scholar
  17. 17.
    L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, Energy Environ. Sci. 11, 106 (2018).CrossRefGoogle Scholar
  18. 18.
    X. Huang, Z. Zeng, and H. Zhang, Chem. Soc. Rev. 42, 1934 (2013).CrossRefGoogle Scholar
  19. 19.
    X.J. Lu, Y. Wang, X.Y. Zhang, G.Q. Xu, D.M. Wang, J. Lv, Z.X. Zheng, and Y.C. Wu, J. Hazard. Mater. 341, 10 (2018).CrossRefGoogle Scholar
  20. 20.
    C. Tan and H. Zhang, Chem. Soc. Rev. 44, 2713 (2015).CrossRefGoogle Scholar
  21. 21.
    X. Zhang and Y. Xie, Chem. Soc. Rev. 42, 8187 (2013).CrossRefGoogle Scholar
  22. 22.
    W.J. Zhou, Z.Y. Yin, Y.P. Du, X. Huang, Z.Y. Zeng, Z.X. Fan, H. Liu, J.Y. Wang, and H. Zhang, Small 9, 140 (2013).CrossRefGoogle Scholar
  23. 23.
    F. Meng, J.T. Li, S.K. Cushing, M.J. Zhi, and N.Q. Wu, J. Am. Chem. Soc. 135, 10286 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nano, Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
  2. 2.Zhengzhou Yu-Tong Bus CoZhengzhouChina

Personalised recommendations