Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2840–2852 | Cite as

Predicting Crack Initiation of Solder Joints with Varying Sizes Under Bending

  • Sadegh Mirmehdi
  • Gholam Hossein Farrahi
  • Amir NouraniEmail author
  • Farid Soroosh
Article
  • 66 Downloads

Abstract

The critical strain energy release rate for crack initiation, Jci, was measured under mode I loading for SAC305 solder joints between two copper substrates. Fracture tests were performed using double cantilever beam specimens at a strain rate of 0.03 s−1. Different bond-line widths (i.e., joint size in the out-of-plane dimension) and thicknesses, were examined. The fracture force per unit width and Jci (the average value of four J-integral contours encircling the crack tip) were relatively insensitive to the width of the joint ranging from 8 mm to 21 mm. Variations in bond-line thickness (i.e., 150 μm, 250 μm and 450 μm) also had an insignificant influence on the fracture energy of solder joints. This behavior was explained in terms of stress distribution, crack-tip plastic zone area and triaxiality factor produced in the solder layer. Crack initiation in the specimens was then predicted using Jci as a property. Finally, a cohesive zone model was developed using a single set of parameters that was successfully used to predict the fracture loads of the joints with different sizes.

Keywords

Solder joint joint width joint thickness fracture critical strain energy release rate constraint 

List of Symbols

E

Young’s modulus

F

Applied force on the specimen

Fci

Fracture force of the specimen

Gth

Fatigue threshold strain energy release rate

Gci

Analytical critical strain energy release rate for crack initiation

Gcs

Analytical steady-state critical strain energy release rate

Jci

Elastic–plastic critical strain energy release rate for crack initiation

Jcs

Elastic–plastic steady state critical strain energy release rate

JIc

Critical mode I energy in cohesive region

KII

Mode II stress intensity factor

KI

Mode I stress intensity factor

Kn

Cohesive interface stiffness in normal direction

t

Solder joint thickness

w

Solder joint width

Greek Symbols

Ψ

Phase angle (mode ratio) of loading

ν

Poisson ratio

σn

Cohesive normal stress

σnc

Critical cohesive normal stress

δn

Cohesive normal displacement

σy

Opening stress

ɛy

Opening strain

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research was supported by Iran’s National Elites Foundation. The authors would like to thank Prof. Farzam Farahmand, Mr. Behnam Gomari and Mr. Khodadad Azami for their advice and technical support.

References

  1. 1.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).CrossRefGoogle Scholar
  2. 2.
    B.Z. Hong, The Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (1998)Google Scholar
  3. 3.
    S. Jin, JOM J. Miner. Met. Mater. Soc 45, 13 (1993).CrossRefGoogle Scholar
  4. 4.
    D.S. Kim, Q. Yu, T. Shibutani, N. Sadakata, and T. Inoue, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2004)Google Scholar
  5. 5.
    J.W. Kim and S.B. Jung, Mater. Sci. Eng. 371, 267 (2004).CrossRefGoogle Scholar
  6. 6.
    J. Wang, H. Lim, H. Lew, W.T. Saw, and C.H. Tan, Microelectron. Reliab. 44, 833 (2004).CrossRefGoogle Scholar
  7. 7.
    S.P. Nadimpalli and J.K. Spelt, Mater. Sci. Eng. 527, 724 (2010).CrossRefGoogle Scholar
  8. 8.
    S.P. Nadimpalli and J.K. Spelt, Eng. Fract. Mech. 77, 3446 (2010).CrossRefGoogle Scholar
  9. 9.
    S.P. Nadimpalli and J.K. Spelt, Eng. Fract. Mech. 78, 317 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Nourani and J.K. Spelt, Mater. Des. 85, 115 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Nourani and J.K. Spelt, Eng. Fract. Mech. 142, 64 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Nourani, S. Akbari, and J.K. Spelt, Eng. Fract. Mech. 143, 47 (2015).CrossRefGoogle Scholar
  13. 13.
    V. Tvergaard and J.W. Hutchinson, J. Mech. Phys. Sol. 44, 789 (1996).CrossRefGoogle Scholar
  14. 14.
    A. Varias, Z. Suo, and C. Shih, J. Mech. Phys. Sol. 40, 485 (1992).CrossRefGoogle Scholar
  15. 15.
    J.S. Wang and Z. Suo, Acta Metall. Mater. 38, 1279 (1990).CrossRefGoogle Scholar
  16. 16.
    A. Nourani, S. Akbari, and J.K. Spelt, Int. J. Sol. Struct. 90, 30 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Nourani, S. Mirmehdi, G. Farrahi, and F. Soroush, Fatig. Fract. Eng. Mater. Struct. 42, 425 (2018)Google Scholar
  18. 18.
    S. Akbari, A. Nourani, and J.K. Spelt, J. Electron. Mater. 45, 473 (2016).CrossRefGoogle Scholar
  19. 19.
    S.P. Nadimpalli and J.K. Spelt, Eng. Fract. Mech. 78, 1169 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Abou-Hamda, M. Megahed, and M. Hammouda, Eng. Fract. Mech. 60, 605 (1998).CrossRefGoogle Scholar
  21. 21.
    L. Kawashita, A. Kinloch, D. Moore, and J. Williams, Int. J. Adhes. Adhes. 28, 199 (2008).CrossRefGoogle Scholar
  22. 22.
    W. Bascom, R. Cottington, R. Jones, and P. Peyser, J. Appl. Polym. Sci. 19, 2545 (1975).CrossRefGoogle Scholar
  23. 23.
    D. Schmueser and N. Johnson, J. Adhes. 32, 171 (1990).CrossRefGoogle Scholar
  24. 24.
    R. Kahraman, M. Sunar, and B. Yilbas, J. Mater. Process. Tech. 205, 183 (2008).CrossRefGoogle Scholar
  25. 25.
    L.F. Da Silva, R. Carbas, G.W. Critchlow, M. Figueiredo, and K. Brown, Int. J. Adhes. Adhes. 29, 621 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Azari, M. Papini, and J. Spelt, Eng. Fract. Mech. 78, 153 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Ameli, M. Papini, J. Schroeder, and J. Spelt, Eng. Fract. Mech. 77, 521 (2010).CrossRefGoogle Scholar
  28. 28.
    L. Yin, X. Zhang, and C. Lu, J. Electron. Mater. 38, 2179 (2009).CrossRefGoogle Scholar
  29. 29.
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, J. Mater. Sci. Mater. Electron. 19, 383 (2008).CrossRefGoogle Scholar
  30. 30.
    D. Williamson, J. Field, S. Palmer, and C. Siviour, J. Phys. D Appl. Phys. 40, 4691 (2007).CrossRefGoogle Scholar
  31. 31.
    C. Siviour, S. Walley, W. Proud, and J. Field, J. Phys. D Appl. Phys. 38, 4131 (2005).CrossRefGoogle Scholar
  32. 32.
    D.R. Smith, T.A. Siewert, L. Stephen, and J.C. Madeni, Database for Solder Properties With Emphasis on New Lead-Free Solders. (IOP publishing nistweb, 2002 https://www.nist.gov/publications/database-solder-properties-emphasis-new-lead-free-solders. Accessesd 6 June 2002.
  33. 33.
    H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).CrossRefGoogle Scholar
  34. 34.
    Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 375 (2012).CrossRefGoogle Scholar
  35. 35.
    Y. Yao and L.M. Keer, Microelectron. Reliab. 53, 629 (2013).CrossRefGoogle Scholar
  36. 36.
    X. Long, I. Dutta, V. Sarihan, and D.R. Frear, J. Electron. Mater. 37, 189 (2008).CrossRefGoogle Scholar
  37. 37.
    C.U. Kim, W.H. Bang, H. Xu, and T.K. Lee, JOM 65, 1362 (2013).CrossRefGoogle Scholar
  38. 38.
    I.D. You and H.K. Kim, Mater. Sci. Eng. A 556, 551 (2012).CrossRefGoogle Scholar
  39. 39.
    E.H. Wong, C.S. Selvanayagam, S.K.W. Seah, W.D. Van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owens, L.C. Tan, D.R. Frear, M. Leoni, and Y.S. Lai, J. Electron. Mater. 37, 829 (2008).Google Scholar
  40. 40.
    A. Nourani, S. Akbari, G. Farrahi, and J.K. Spelt, Eng. Fract. Mech. 186, 119 (2017)Google Scholar
  41. 41.
    S.S. Bhadauria, M. Hora, and K. Pathak, J. Sol. Mech. 1, 226 (2009).Google Scholar
  42. 42.
    D.H. Moon, D.G. Kim, J.S. Lee, J.M. Lee, and M.H. Kim, J. Offshore Mech. Arct. Eng. 137, 64 (2015).CrossRefGoogle Scholar
  43. 43.
    X.K. Zhu and J.A. Joyce, Eng. Fract. Mech. 85, 1 (2012).CrossRefGoogle Scholar
  44. 44.
    N. O’Dowd, Fracture and Fatigue of Welded Joints and Structures, 3rd ed. (Cambridge: Woodhead Publishing, 2011), pp. 17–30.CrossRefGoogle Scholar
  45. 45.
    S. Azari, M. Papini, and J. Spelt, Eng. Fract. Mech. 78, 138 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sadegh Mirmehdi
    • 1
  • Gholam Hossein Farrahi
    • 1
  • Amir Nourani
    • 1
    Email author
  • Farid Soroosh
    • 1
  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations