Advertisement

A Facile Approach of Fabricating Various ZnO Microstructures via Electrochemical Deposition

  • Fen QiaoEmail author
  • Qichao Liang
  • Jian Yang
  • Zhenya Chen
  • Qian Xu
Article

Abstract

A facile electrochemical route was proposed for the shape-selective synthesis of ZnO structures on conductive substrates. Our strategy for designing ZnO structures was based on a double-electrodes electrochemical deposition approach, in which the well-oriented ZnO structures with variable morphology on different conductive substrates could be adjusted by monitoring electrochemical parameters (e.g., zinc chloride concentration, deposition potential, and deposition temperature). The variation in deposition parameters led to the ZnO formation of different structures, such as ZnO flowers, sheets and aggregates. In addition, the analysis of I-V characteristics illustrated that the ZnO flowers were composed of sheets clustered on the graphite substrate and exhibited higher dark current than other structures. Furthermore, the remarkable Schottky contact behaviour was found for ZnO flowers deposited on carbon paper and copper foil substrates. This work demonstrates a simple method for tuning the growth of desired ZnO structures and exploring its application in functional optoelectronic devices.

Keywords

ZnO electrochemical deposition substrate I-V characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51406069); China Postdoctoral Science Foundation Special Project (No. 2016T90426); China Postdoctoral Science Foundation (No. 2015M581733); Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501107B); Training Project of Jiangsu University Youth Backbone Teacher; and National Natural Science Foundation of China (51572002).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11664_2019_6988_MOESM1_ESM.pdf (213 kb)
Supplementary material 1 (PDF 213 kb)

References

  1. 1.
    M. Chen, L.F. Hu, J.X. Xu, M.Y. Liao, L.M. Wu, and X.S. Fang, Small 7, 2449 (2011).Google Scholar
  2. 2.
    X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, and D. Golberg, J. Mater. Chem. 18, 509 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, Nano Lett. 8, 2794 (2008).CrossRefGoogle Scholar
  4. 4.
    Q.C. Liang, F. Qiao, X.J. Cui, and X.Y. Hou, Mat. Sci. Semicon. Proc. 89, 154 (2019).CrossRefGoogle Scholar
  5. 5.
    U.K. Gautam, M. Imura, C.S. Rout, Y. Bando, X.S. Fang, B. Dierre, L. Sakharov, A. Govindaraj, T. Sekiguchi, D. Golberg, and C.N.R. Rao, PNAS 107, 13588 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, Mater. Lett. 186, 7 (2017).CrossRefGoogle Scholar
  7. 7.
    F. Qiao, Q.C. Liang, X.J. Cui, Q. Xu, Y. Xie, and H.Q. Chu, ES. Energ. Environ.  https://doi.org/10.30919/esee8c187 (2018).
  8. 8.
    X. Deng, L. Zhang, J. Guo, Q. Chen, and J. Ma, Mater. Res. Bull. 90, 170 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Tului, A. Bellucci, A. Albolino, and G. Migliozzi, Surf. Coat. Tech. 205, 1070 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, L. Wang, X. Liu, Y. Yan, C. Chen, and J. Zhu, J. Phys. Chem. B. 109, 13091 (2005).CrossRefGoogle Scholar
  11. 11.
    C.L. Wu, L. Chang, H.G. Chen, C.W. Lin, Y.C. Chao, and J.K. Yan, Thin Solid Films 498, 137 (2006).CrossRefGoogle Scholar
  12. 12.
    G. Zhong, A. Kalam, A.S. Al-Shihri, Q. Su, J. Li, and G. Du, Mater. Res. Bull. 47, 1467 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Chen, J. Chen, D. Chen, Y. Zhou, W. Li, Y. Ren, and L. Hu, Mater. Lett. 117, 162 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, and J. Zhang, Electrochim. Acta 90, 530 (2013).CrossRefGoogle Scholar
  15. 15.
    N. Oleynik, M. Adam, A. Krtschil, J. Bläsing, A. Dadgar, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, and A. Krost, J. Cryst. Growth 248, 14 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Ou, P.E. Sanchez-Jimenez, A. Datta, F.L. Boughey, R.A. Whiter, S.L. Sahonta, and S. Kar-Narayan, ACS. Appl. Mater. Inter. 8, 13678 (2016).CrossRefGoogle Scholar
  17. 17.
    Z. Chen, W. Ren, G. Libo, B. Liu, S. Pei, and H. Cheng, Nat. Mater. 10, 424 (2011).CrossRefGoogle Scholar
  18. 18.
    X. Dong, Y. Ma, G. Zhu, Y. Huang, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen, J. Mater. Chem. 22, 17044 (2012).CrossRefGoogle Scholar
  19. 19.
    T. Maiyalagan, X. Dong, P. Chen, and X. Wang, J. Mater. Chem. 22, 5286 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Fen Qiao
    • 1
    Email author
  • Qichao Liang
    • 1
  • Jian Yang
    • 1
  • Zhenya Chen
    • 1
  • Qian Xu
    • 2
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Institute for Energy Research, Jiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations