Microwave Absorbing Properties of Flaky Carbonyl Iron Powder Prepared by Rod Milling Method

  • Peicheng Ji
  • Guozhi XieEmail author
  • Ningyan Xie
  • Jun Li
  • Jing Chen
  • Jiangwei Chen


The rod milling method of cylindrical-shaped milling medium was applied to prepare the flaky carbonyl iron powders with varying milling times (10 h, 15 h and 20 h). The sample obtained by the spherical milling medium was also used as a contrast. The samples were characterized by x-ray diffraction, scanning electron microscopy and Raman spectroscopy, respectively. The complex permittivity and permeability were measured by vector network analyzer in the frequency range of 1–18 GHz. The results revealed that cylinder-prepared samples have better impedance matching properties and good absorbing properties. The minimum reflection loss (RL) of − 15.7 dB was observed at 6.0 GHz with a thickness of 1.5 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 4.5 GHz to 8.5 GHz. This method is expected to play an important role for the promising design of flaky microwave absorbers, which can be applied to fifth-generation (5G) communication.


Milling medium milling time microstructure microwave absorber carbonyl iron powders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No. 11304159); the Introduction of Talent Scientific Research Fund of Nanjing University of Posts and Telecommunications (Grant No. NY213016).


  1. 1.
    L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, and F. Li, Nanotechnology 21, 095708 (2010).CrossRefGoogle Scholar
  2. 2.
    N. Tian, C.Y. You, J. Liu, F. Qu, C.H. Wang, and Z.X. Lu, J. Magn. Magn. Mater. 339, 114 (2013).CrossRefGoogle Scholar
  3. 3.
    Á. Kukovecz, T. Kanyó, Z. Kónya, and I. Kiricsi, Carbon 43, 994 (2005).CrossRefGoogle Scholar
  4. 4.
    P. Baláž and E. Dutková, Miner. Eng. 22, 681 (2009).CrossRefGoogle Scholar
  5. 5.
    L. Russo, F. Colangelo, R. Cioffi, I. Rea, and L.D. Stefano, Materials 4, 1023 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Takacs, Prog. Mater. Sci. 47, 355 (2002).CrossRefGoogle Scholar
  7. 7.
    N.S. Lameck, K.K. Kiangi, and M.H. Moys, Miner. Eng. 19, 1357 (2006).CrossRefGoogle Scholar
  8. 8.
    F.L. von Krüger, J.D. Donda, M.A.R. Drummond, and A.E.C. Peres, Dev. Miner. Process. 13, C4–86 (2000). Scholar
  9. 9.
    A.Z.M. Abouzeid and D.W. Fuerstenau, Int. J. Miner. Process. 102, 51 (2012).CrossRefGoogle Scholar
  10. 10.
    M.D. Sinnott, P.W. Cleary, and R.D. Morrison, Miner. Eng. 24, 138 (2011).CrossRefGoogle Scholar
  11. 11.
    P. Bhattacharya and C.K. Das, Ind. Eng. Chem. Res. 52, 9594 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Kato, M. Horibe, M. Ameya, and S. Kurokawa, IEEE Trans. Instrum. Meas. 64, 1748 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Zhao, S.Y. Xu, D.M. Tang, Y. Yang, and B.S. Zhang, J. Appl. Phys. 116, 243911 (2014).CrossRefGoogle Scholar
  14. 14.
    Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, J. Magn. Magn. Mater. 323, 600 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle, Polymer 40, 5967 (1999).CrossRefGoogle Scholar
  16. 16.
    J. He, W. Wang, and J. Guan, J. Appl. Phys. 111, 093924 (2012).CrossRefGoogle Scholar
  17. 17.
    F.S. Wen, W.L. Zuo, H.B. Yi, N. Wang, L. Qiao, and F.S. Li, Phys. B Condens. Matter 404, 3567 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang, and R.B. Yang, J. Alloys Compd. 548, 18 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Naik, J. Zhou, C. Gao, G. Liu, and L. Wang, J. Energy Inst. 89, 21 (2016).CrossRefGoogle Scholar
  21. 21.
    X. Weng, B. Li, Y. Zhang, X. Lv, and G. Gu, J. Alloys Compd. 695, 508 (2017).CrossRefGoogle Scholar
  22. 22.
    A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Adv. Powder Technol. 25, 423 (2014).CrossRefGoogle Scholar
  23. 23.
    S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, J. Appl. Phys. 97, 10F905 (2005). Scholar
  24. 24.
    R.B. Yang and W.F. Liang, J. Appl. Phys. 109, 07A311 (2011). Scholar
  25. 25.
    Y.B. Feng, T. Qiu, C.Y. Shen, and X.Y. Li, IEEE Trans. Magn. 42, 363 (2006).CrossRefGoogle Scholar
  26. 26.
    P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, and J. Chen, J. Mater. Sci. Mater. Electron. 29, 4711 (2018).CrossRefGoogle Scholar
  27. 27.
    S. Yoshida, S. Ando, Y. Shimada, and K. Suzuki, J. Appl. Phys. 93, 6659 (2003).CrossRefGoogle Scholar
  28. 28.
    T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).CrossRefGoogle Scholar
  29. 29.
    L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang, J. Appl. Phys. 101, 103916 (2007). Scholar
  30. 30.
    W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, and Y. Du, Chem. Eng. J. 313, 734 (2017).CrossRefGoogle Scholar
  31. 31.
    F.S. Wen, L. Qiao, D. Zhou, W.L. Zuo, H.B. Yi, and F.S. Li, Chin. Phys. B 17, 2263 (2008).CrossRefGoogle Scholar
  32. 32.
    M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, and G.W. Taylor, Appl. Phys. Lett. 80, 4404 (2002).CrossRefGoogle Scholar
  33. 33.
    X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, and C.G. Lee, Appl. Phys. Lett. 89, 053115 (2006).CrossRefGoogle Scholar
  34. 34.
    L. Qiao, F.S. Wen, J.Q. Wei, J.B. Wang, and F.S. Li, J. Appl. Phys. 103, 063903 (2008).CrossRefGoogle Scholar
  35. 35.
    T. Kasagi, T. Tsutaoka, and K. Hatakeyama, IEEE Trans. Magn. 35, 3424 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Peicheng Ji
    • 1
  • Guozhi Xie
    • 1
    Email author
  • Ningyan Xie
    • 1
  • Jun Li
    • 1
  • Jing Chen
    • 1
  • Jiangwei Chen
    • 1
  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China

Personalised recommendations