Journal of Electronic Materials

, Volume 48, Issue 5, pp 2826–2839 | Cite as

Relationship of Mechanical and Micromechanical Properties with Microstructural Evolution of Sn-3.0Ag-0.5Cu (SAC305) Solder Wire Under Varied Tensile Strain Rates and Temperatures

  • Izhan Abdullah
  • Muhammad Nubli Zulkifli
  • Azman JalarEmail author
  • Roslina Ismail
  • Mohd Arrifin Ambak


A characterization of mechanical and micromechanical properties of SAC305 solder wire under varied strain rates and temperatures was performed using tensile and nanoindentation tests. The evolution of SAC305 lead-free solder wire grains was compared in samples that were subjected to various strain rates and temperatures using tensile tests based on ASTM E12 standards. Different behaviours of mechanical properties, micromechanical properties, and microstructure evolution of SAC305 solder wire were observed when either temperature or strain rate was held constant and the other varied. Both tensile and nanoindentation tests produced qualitative results, such as dynamic recovery and occurrence of pop-in events, that reflected changes of microstructure. It was observed that some of the mechanical properties of SAC305 solder wire, namely yield strength (YS), ultimate tensile strength (UTS) and Young’s modulus, showed the same trends, but with lower values, compared to micromechanical properties obtained from nanoindentation tests based upon hardness and reduced modulus. Microstructure examination further confirms that the YS, UTS and hardness values increase with more solder wire grain refinement. SAC305 solder wire also maintained an equiaxed structure under various strain rates and temperatures.


Lead-free solder SAC305 mechanical properties micromechanical properties nanoindentation tensile test microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Universiti Kebangsaan Malaysia (UKM) under Research University Grants (UKM-OUP-NBT-29-143/2011, OUP-2012-120 and DIP-2012-14).


  1. 1.
    H. Ma, J. Mater. Sci. 44, 3841 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Lee, L. Nguyen, and G. Selvaduray, Microelectron. Reliab. 40, 231 (2000).CrossRefGoogle Scholar
  3. 3.
    H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).CrossRefGoogle Scholar
  4. 4.
    B.S.S.C. Rao, K.M. Kumar, V. Kripesh, and K.Y. Zeng, Mater. Sci. Eng., A 528, 4166 (2011).CrossRefGoogle Scholar
  5. 5.
    F. Zhu, H. Zhang, R. Guan, and S. Liu, J. Alloys Compd. 438, 100 (2007).CrossRefGoogle Scholar
  6. 6.
    C. Andersson, P. Sun, and J. Liu, J. Alloys Compd. 457, 97 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Fawzy, Mater. Charact. 58, 323 (2007).CrossRefGoogle Scholar
  8. 8.
    I. Abdullah, M.N. Zulkifli, A. Jalar, and R. Ismail, Solder (SSMT: Surf. Mt. Technol, 2017).Google Scholar
  9. 9.
    A.C. Fischer-Cripps, Surf. Coatings Technol. 200, 4153 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Sun, J. Liang, Z.-H. Xu, G. Wang, and X. Li, J. Mater. Sci.: Mater. Electron. 19, 514 (2007).Google Scholar
  11. 11.
    J.P. Lucas, H. Rhee, F. Guo, and K.N. Subramanian, J. Electron. Mater. 32, 1375 (2003).CrossRefGoogle Scholar
  12. 12.
    L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, and P. Wu, Mater. Sci. Eng., A 667, 368 (2016).CrossRefGoogle Scholar
  13. 13.
    W. Oliver and G. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  14. 14.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2011).CrossRefGoogle Scholar
  15. 15.
    P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 32, 142 (2003).CrossRefGoogle Scholar
  16. 16.
    A. Fischer-Cripps, Vacuum 58, 569 (2000).CrossRefGoogle Scholar
  17. 17.
    A. Gouldstone, H.-J. Koh, K.-Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
  18. 18.
    D. Kiener, K. Durst, M. Rester, and A.M. Minor, JOM 61, 14 (2009).Google Scholar
  19. 19.
    E. Rabkin, J.K. Deuschle, and B. Baretzky, Acta Mater. 58, 1589 (2010).CrossRefGoogle Scholar
  20. 20.
    L. Lu, S.X. Li, and K. Lu, Scr. Mater. 45, 1163 (2001).CrossRefGoogle Scholar
  21. 21.
    M.J. Esfandyarpour and R. Mahmudi, Mater. Sci. Eng., A 530, 402 (2011).CrossRefGoogle Scholar
  22. 22.
    F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, and X.R. Zhang, J. Alloys Compd. 507, 215 (2010).CrossRefGoogle Scholar
  23. 23.
    F. Yang and J.C.M. Li, in Lead-Free Electron. Solder. (Springer US, Boston, MA, 2007), pp. 191–210.Google Scholar
  24. 24.
    X.Q. Shi, W. Zhou, H.L.J. Pang, and Z.P. Wang, J. Electron. Packag. 121, 179 (1999).CrossRefGoogle Scholar
  25. 25.
    C.R. Siviour, S.M. Walley, W.G. Proud, and J.E. Field, J. Phys. D Appl. Phys. 38, 4131 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Woodmansee and R. Neu, Acta Mater. 54, 197 (2006).CrossRefGoogle Scholar
  27. 27.
    Y. Cheng and T.A. Siewert, J. Electron. Mater. 32, 535 (2003).CrossRefGoogle Scholar
  28. 28.
    C. Basaran and J. Jiang, Mech. Mater. 34, 349 (2002).CrossRefGoogle Scholar
  29. 29.
    D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts, J. Mater. Res. 24, 3268 (2009).CrossRefGoogle Scholar
  30. 30.
    I.M. Hutchings, J. Mater. Res. 24, 581 (2011).CrossRefGoogle Scholar
  31. 31.
    V.M.F. Marques, C. Johnston, and P.S. Grant, Acta Mater. 61, 2460 (2013).CrossRefGoogle Scholar
  32. 32.
    P.T. Vianco, J.A. Rejent, and J.J. Martin, JOM 55, 50 (2003).Google Scholar
  33. 33.
    I. Abdullah, M.N. Zulkifli, A. Jalar, and R. Ismail, Solder. Surf. Mt. Technol. 29, 110 (2017).CrossRefGoogle Scholar
  34. 34.
    J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, and V.H. Hammond, Mater. Sci. Eng., A 561, 109 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan MalaysiaSelangorMalaysia
  2. 2.Universiti Kuala Lumpur (UniKL), British Malaysia Institute (BMI), Electrical Engineering SectionGombakMalaysia
  3. 3.Visual Arts Program, Cultural CentreUniversity of MalayaKuala LumpurMalaysia
  4. 4.RedRing Solder (Malaysia) Sdn. Bhd. (RSM)Batu CavesMalaysia

Personalised recommendations