Journal of Electronic Materials

, Volume 48, Issue 5, pp 2811–2825 | Cite as

A Predictive Model for Thermal Conductivity of Nano-Ag Sintered Interconnect for a SiC Die

  • Zhenyu Zhao
  • Hongqiang Zhang
  • Guisheng Zou
  • Hui Ren
  • Weidong Zhuang
  • Lei LiuEmail author
  • Y. Norman Zhou


Nano-Ag sintering technology is a promising die attach method for power semiconductors in high reliability and high temperature (i.e. 300°C) applications. However, the present predictive models for thermal conductivity of multiphase materials are not suitable for the porous sintered Ag due to the model limitations of low porosity, i.e. < 10%, and simple pore geometry (sphere or ellipsoid). In this paper, an extension differential scheme (EDS) model based on the classical differential scheme (DS) approach has been developed. The thermal conductivity of the microporous Ag die attach layer on a SiC device was developed by measuring seven different sintering parameters that are fitted with the model. The finite element method (FEM) was also employed to analyze the influence of different factors. The results indicate that the EDS model has better adaptability and accuracy, which will be important for implementation of this new die attach material and technology.


Nano-Ag sintering modeling thermal conductivity SiC device packaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Key Research and Development Program of China (2017YFB1104900), and National Natural Science Foundation of China (Grant Nos. 51520105007, 51775299)


  1. 1.
    Z. Chen, Y. Yao, D. Boroyevich, K.D.T. Ngo, P. Mattavelli, and K. Rajashekara, IEEE Trans. Power Electron. 29, 2307 (2015).CrossRefGoogle Scholar
  2. 2.
    W. Zhang, Y. Su, M. Mu, and D.J. Gilham, IEEE Trans. Power Electron. 30, 1421 (2015).CrossRefGoogle Scholar
  3. 3.
    A.M. Abou-Alfotouh, A.V. Radun, H.R. Chang, and C. Winterhalter, IEEE Trans. Power Electron. 21, 880 (2017).CrossRefGoogle Scholar
  4. 4.
    L.C. Wai, D.M. Zhi, V.S. Rao, and M.W. Daniel Rhee, in IEEE Electronic Packaging Technology Conference Proceedings (2012), pp. 372–378Google Scholar
  5. 5.
    L.C. Wai, W.W. Seit, E.P. Jian Rong, M.Z. Ding, V.S. Rao, and D.R. Minwoo, in IEEE Electronic Packaging Technology Conference Proceedings (2013), pp. 335–340Google Scholar
  6. 6.
    D. Wakuda, K.-S. Kim, and K. Suganuma, in IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics Proceedings (2008), pp. 1–6Google Scholar
  7. 7.
    D. Wakuda, K.-S. Kim, and K. Suganuma, in International Conference on Nanotechnology Proceedings (2009), pp. 412–415Google Scholar
  8. 8.
    R. Durairaj, R. Ashayer, H.R. Kotadia, N. Haria, C. Lorenz, O. Mokhtari, and S.H. Mannan, in International Conference on Nanotechnology Proceedings (2012), pp. 1–4.Google Scholar
  9. 9.
    R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2456 (2014).CrossRefGoogle Scholar
  10. 10.
    S.A. Paknejad and S.H. Mannan, Microelectron. Rel. 7, 1 (2017).CrossRefGoogle Scholar
  11. 11.
    N. Heuck, A. Langer, A. Stranz, G. Palm, R. Sittig, A. Bakin, and A. Waag, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1846 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Kunimune, M. Kuramoto, S. Ogawa, M. Niwa, M. Nogi, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 909 (2012).CrossRefGoogle Scholar
  13. 13.
    R. Dudek, R. Doring, P. Sommer, B. Seiler, K. Kreyssig, H. Walter, M. Becker, and M. Gunther, in International Conference on Thermal, Mechanical and Multi-Physics simulation and Experiments in Microelectronics and Microsystems Proceedings (2014), pp. 1–9Google Scholar
  14. 14.
    KonstantinMarkov and LuigiPreziosi, Heterogeneous Media : Micromechanics Modeling Methods and Simulations (New York: Springer, 2001), pp. 21–85.Google Scholar
  15. 15.
    J.C. Maxwell, A Treatise on Electricity and magnetism (Humphrey Milford: Oxford University Press, 1955), pp. 478–480.Google Scholar
  16. 16.
    J.D. Eshelby, in Royal Society of London Series Mathematical and Physical Sciences Proceedings (1957), pp. 376–396Google Scholar
  17. 17.
    S.T. Chua and K.S. Siow, J. Alloys Compd. 687, 486 (2016).CrossRefGoogle Scholar
  18. 18.
    F. Jafari and P.D. Higgins, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 21 (1989).CrossRefGoogle Scholar
  19. 19.
    L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, IEEE Trans. Compon. Packag. Technol. 27, 259 (2004).CrossRefGoogle Scholar
  20. 20.
    J.D. Eshelby, Prog. Solid Mech. 2, 87 (1961).Google Scholar
  21. 21.
    X. Markenscoff, J. Elast. 49, 163 (1997).CrossRefGoogle Scholar
  22. 22.
    G.J. Rodin, J. Mech. Phys. Solids 44, 1977 (1996).CrossRefGoogle Scholar
  23. 23.
    V.A. Lubarda and X. Markenscoff, Int. J. Solids Struct. 35, 3406 (1998).CrossRefGoogle Scholar
  24. 24.
    I.I. Bogdanov, V.V. Mourzenko, J.F. Thovert, and P.M. Adler, Water Resour. Res. 39, 257 (2003).Google Scholar
  25. 25.
    D.A.G. Bruggeman, Ann. Phys-Berlin 24, 636 (1935).CrossRefGoogle Scholar
  26. 26.
    D.A.G. Bruggeman, Ann. Phys-Berlin 25, 645 (1936).CrossRefGoogle Scholar
  27. 27.
    R. McLaughlin, Int. J. Eng. Sci. 15, 237 (1977).CrossRefGoogle Scholar
  28. 28.
    Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).CrossRefGoogle Scholar
  29. 29.
    H. Dong, B. Wen, and R. Melnik, Sci. Rep-UK 4, 7037 (2014).CrossRefGoogle Scholar
  30. 30.
    J. Bliedtner and W. Hansen, Potential Theory (New York: Springer, 1986), pp. 93–131.Google Scholar
  31. 31.
    I.C. Kim and S. Torquato, J. Appl. Phys. 71, 2727 (1992).CrossRefGoogle Scholar
  32. 32.
    A. Lawley, Advances in Metal Processing, ed. J.J. Burke, R. Mehrabian, and V. Weiss (Boston: Springer, 1981), p. 91.CrossRefGoogle Scholar
  33. 33.
    I. Doltsinis and F. Osterstock, Arch. Comput. Methods Eng. 12, 303 (2005).CrossRefGoogle Scholar
  34. 34.
    N.W. Chen, and C. Hong, in IEEE International Conference on Systems, Man and Cybernetics Proceedings (1987), pp. 177–181Google Scholar
  35. 35.
    Y. Luo, in IEEE CPMT Symposium Japan Proceedings (2010), pp. 1–5Google Scholar
  36. 36.
    F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, and M.C. Hamilton, IEEE Trans. Power Electron. 32, 7083 (2017).CrossRefGoogle Scholar
  37. 37.
    P. He, J. Zhang, J. Zhang, and L. Yin, Adv. Mater. Sci. Eng. 2017, 1 (2017).Google Scholar
  38. 38.
    V. Szekely, Microelectron. J. 28, 277 (1997).CrossRefGoogle Scholar
  39. 39.
    J.G. Bai, Z.Z. Zhang, G.Q. Lu, and D.P.H. Hasselman, Int. J. Thermophys. 26, 1607 (2005).CrossRefGoogle Scholar
  40. 40.
    H. Wang, Y. Xu, M. Shimono, Y. Tanaka, and M. Yamazaki, Mater. Trans. 48, 2349 (2007).CrossRefGoogle Scholar
  41. 41.
    Y. Ocak, S. Aksöz, N. Maraşlı, and E. Çadırlı, Fluid Phase Equilib. 295, 60 (2010).CrossRefGoogle Scholar
  42. 42.
    A. Aizaz, P. Bauer, T.L. Grimm, N.T. Wright, and C.Z. Antoine, IEEE Trans. Appl. Supercond. 17, 1310 (2007).CrossRefGoogle Scholar
  43. 43.
    S.S. Mahajan, G. Subbarayan, and B.G. Sammakia, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1132 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  2. 2.Nanjing SilverMicro Electronics LtdNanjingChina
  3. 3.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations