Assessment of a Truck Localized Air Conditioning System with Thermoelectric Coolers

  • Qiushi Wan
  • Chuqi Su
  • Xiaohong Yuan
  • Linli Tian
  • Zuguo Shen
  • Xun LiuEmail author
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules


In vehicles, the power consumption of the traditional air conditioning system used to cool an entire cabin reaches 3–4 kW. In general, there is only one driver in the vehicle, so adjusting the local thermal environment just around the driver can avoid much energy waste. A localized air conditioning system based on thermoelectric cooling (TEC) devices was constructed and assessed in an experimental study to analyze its working characteristics under practical operating conditions. The relationship between the refrigeration performance and the operating current of the devices was studied, and a bench test was carried out to evaluate the performance of the device and the accuracy of the simulation. A heavy-duty truck cab was selected for the application of the TEC system. The temperature distribution of the cab and the human body’s surface was analyzed by the method of computational fluid dynamics to predict the performance of the whole system. The driver’s thermal comfortwas analyzed based on equivalent temperature and thermal comfort deviation. Under given conditions, most body parts were in the comfort temperature range. The results indicated that the system can meet the thermal comfort requirements.


Thermoelectric cooling localized cooling air conditioning system commercial vehicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No. 51805387), the 111 Project (B17034), and the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (Grant No. 2016-YS-049).


  1. 1.
    S. Chen, N. Li, Y. Hiroshi, and J. Guan, Energy Build. 43, 1063 (2011).CrossRefGoogle Scholar
  2. 2.
    S. Murshed and N.D. Castro, Renew. Sust. Energy Rev. 78, 821 (2017).CrossRefGoogle Scholar
  3. 3.
    G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Lv, X.D. Wang, T.H. Wang, and C.H. Cheng, Appl. Energy 164, 501 (2016).CrossRefGoogle Scholar
  5. 5.
    H.L. Tsai and P.T. Le, Energy Convers. Manag. 118, 170 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Zhu, H. Tan, and J. Yu, Energy Convers. Manag. 76, 685 (2013).CrossRefGoogle Scholar
  7. 7.
    X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag. 90, 121 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Ma, P. Jaideep, E. Srinath, H. Scott, D. Samruddhi, and Q.W. Wang, Appl. Energy 185, 1343 (2017).CrossRefGoogle Scholar
  9. 9.
    C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).CrossRefGoogle Scholar
  10. 10.
    X. Liu, Y.D. Deng, K. Zhang, M. Xu, Y. Xu, and C.Q. Su, Appl. Therm. Eng. 71, 364 (2014).CrossRefGoogle Scholar
  11. 11.
    Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energy Convers. Manag. 2016, 266 (2016).CrossRefGoogle Scholar
  12. 12.
    R. Shen, X.L. Gou, H.Y. Xu, and K.R. Qiu, Appl. Energ. 203, 808 (2017).CrossRefGoogle Scholar
  13. 13.
    K. Nicholas and Y.L. Zhang, Energy Convers. Manag. 121, 224 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Richard, M.A. Wijewardane and Z.J. Yang, Appl. Therm. Eng. 112, 1433 (2016).Google Scholar
  15. 15.
    J.L. Niu, L.Z. Zhang, and H.G. Zuo, Energy Build. 34, 487–495 (2002).CrossRefGoogle Scholar
  16. 16.
    X.Q. Sun, L.F. Zhang, and S.G. Liao, Appl. Therm. Eng. 116, 433 (2017).CrossRefGoogle Scholar
  17. 17.
    L.M. Shen, H.X. Chen, F. Xiao, Y.X. Yang, and S.W. Wang, Energy Convers. Manag. 80, 39 (2014).CrossRefGoogle Scholar
  18. 18.
    S.A. Abdul-Wahab, E. Ali, and A.D.M. Ali, et al., Renew. Energy 34, 30 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Gao and D.M. Rowe, Appl. Energy 83, 133 (2006).CrossRefGoogle Scholar
  20. 20.
    G. Mark, L.B. Jiang, and R. Saffa, Int. J. Energy Res. 34, 776 (2010).Google Scholar
  21. 21.
    Y.M. Zeki, Energy Build. 113, 51 (2016).CrossRefGoogle Scholar
  22. 22.
    D.L. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).CrossRefGoogle Scholar
  23. 23.
    K. Chunkyu, C.W. Lee, F. Lee, K. Jungho and Y. Shin, SAE 2012 World Congress and Exhibition (2012).Google Scholar
  24. 24.
    Á.G. Miranda, T.S. Chen, and C.W. Hong, Energy 59, 633 (2013).CrossRefGoogle Scholar
  25. 25.
    G. Debashis, M.Y. Wang, W. Edward, K.H. Chen, K. Shailendra, and T.Y. Han, SAE International Journal of Passenger Cars- Mechanical Systems 5, 885 (2012)Google Scholar
  26. 26.
    K.H. Chen, B. Jeffrey, M.Y. Wang M, G. Debashis, W. Edward, and C. Sourav, SAE 2015 World Congress and Exhibition (2015).Google Scholar
  27. 27.
    M.S. Raut and D.P.V. Walke, Int. J. Eng. Sci. Technol. 4, 2381 (2012).Google Scholar
  28. 28.
    R.C. Allen, D.P. Scott, J.S. Tony, and A.H. Mark, SAE Int. J. Aerosp. 2, 263 (2009).CrossRefGoogle Scholar
  29. 29.
    M.S. Jang, C.D. Koh, and I.S. Moon, Build. Environ. 42, 55 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Advanced Technology for Automotive ComponentsWuhan University of TechnologyWuhanChina
  2. 2.Hubei Collaborative Innovation Center for Automotive Components TechnologyWuhan University of TechnologyWuhanChina

Personalised recommendations