Journal of Electronic Materials

, Volume 48, Issue 5, pp 3345–3350 | Cite as

Photogalvanic Etching of n-GaN for Three-Dimensional Electronics

  • Daniel M. DrydenEmail author
  • Rebecca J. Nikolic
  • M. Saif IslamEmail author
Topical Collection: 60th Electronic Materials Conference 2018
Part of the following topical collections:
  1. 60th Electronic Materials Conference 2018


Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n-type GaN (n-GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage. n-GaN was etched in a dilute KOH solution with K2S2O8 oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.


Gallium nitride electrochemical etching wide-bandgap semiconductors semiconductor fabrication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344, LLNL-JRNL-758918. The authors would like to thank the following sources of funding: Army Research Office (ARO-W911NF-14-4-0341) and the LLNL Livermore Graduate Scholar Program.


  1. 1.
    Y. Zhang, A. Dadgar, and T. Palacios, J. Phys. Appl. Phys. 51, 273001 (2018).CrossRefGoogle Scholar
  2. 2.
    J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Gao, H. Cansizoglu, K.G. Polat, S. Ghandiparsi, A. Kaya, H.H. Mamtaz, A.S. Mayet, Y. Wang, X. Zhang, T. Yamada, E.P. Devine, A.F. Elrefaie, S.-Y. Wang, and M.S. Islam, Nat. Photonics 11, 301 (2017).CrossRefGoogle Scholar
  4. 4.
    A.M. Conway, T.F. Wang, N. Deo, C.L. Cheung, and R.J. Nikolic, IEEE Trans. Nucl. Sci. 56, 2802 (2009).CrossRefGoogle Scholar
  5. 5.
    D.S. McGregor, S.L. Bellinger, and J.K. Shultis, J. Cryst. Growth 379, 99 (2013).CrossRefGoogle Scholar
  6. 6.
    Q. Shao, L.F. Voss, A.M. Conway, R.J. Nikolic, M.A. Dar, and C.L. Cheung, Appl. Phys. Lett. 102, 063505 (2013).CrossRefGoogle Scholar
  7. 7.
    M.A. Prelas, C.L. Weaver, M.L. Watermann, E.D. Lukosi, R.J. Schott, and D.A. Wisniewski, Prog. Nucl. Energy 75, 117 (2014).CrossRefGoogle Scholar
  8. 8.
    F. Medjdoub and K. Iniewski, Gallium Nitride (GaN): Physics, Devices and Technology (2016)Google Scholar
  9. 9.
    S.E. Harrison, L.F. Voss, A.M. Torres, C.D. Frye, Q. Shao, and R.J. Nikolić, J. Vac. Sci. Technol. Vac. Surf. Films 35, 061303 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, M. Sun, H.Y. Wong, Y. Lin, P. Srivastava, C. Hatem, M. Azize, D. Piedra, L. Yu, T. Sumitomo, N.A. de Braga, R.V. Mickevicius, and T. Palacios, IEEE Trans. Electron Devices 62, 2155 (2015).CrossRefGoogle Scholar
  11. 11.
    D. Zhuang and J.H. Edgar, Mater. Sci. Eng. R Rep. 48, 1 (2005).CrossRefGoogle Scholar
  12. 12.
    M.S. Minsky, M. White, and E.L. Hu, Appl. Phys. Lett. 68, 1531 (1996).CrossRefGoogle Scholar
  13. 13.
    C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett. 71, 2151 (1997).CrossRefGoogle Scholar
  14. 14.
    J.A. Bardwell, I.G. Foulds, J.B. Webb, H. Tang, J. Fraser, S. Moisa, and S.J. Rolfe, J. Electron. Mater. 28, L24 (1999).CrossRefGoogle Scholar
  15. 15.
    J.A. Bardwell, J.B. Webb, H. Tang, J. Fraser, and S. Moisa, J. Appl. Phys. 89, 4142 (2001).CrossRefGoogle Scholar
  16. 16.
    D.H. van Dorp, J.L. Weyher, M.R. Kooijman, and J.J. Kelly, J. Electrochem. Soc. 156, D371 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Nowak, X.H. Xia, J.J. Kelly, J.L. Weyher, and S. Porowski, J. Cryst. Growth 222, 735 (2001).CrossRefGoogle Scholar
  18. 18.
    B. Yang and P. Fay, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 22, 1750 (2004).CrossRefGoogle Scholar
  19. 19.
    L. Macht, J.J. Kelly, J.L. Weyher, A. Grzegorczyk, and P.K. Larsen, J. Cryst. Growth 273, 347 (2005).CrossRefGoogle Scholar
  20. 20.
    K. Al-Heuseen, M.R. Hashim, and N.K. Ali, Appl. Surf. Sci. 257, 6197 (2011).CrossRefGoogle Scholar
  21. 21.
    J.L. Weyher, F.D. Tichelaar, D.H. van Dorp, J.J. Kelly, and A. Khachapuridze, J. Cryst. Growth 312, 2607 (2010).CrossRefGoogle Scholar
  22. 22.
    H. Maher, D.W. DiSanto, G. Soerensen, C.R. Bolognesi, H. Tang, and J.B. Webb, Appl. Phys. Lett. 77, 3833 (2000).CrossRefGoogle Scholar
  23. 23.
    J.L. Weyher and J.J. Kelly, in Springer Handbook Crystal Growth (Springer, Berlin, Heidelberg, 2010), pp. 1453–1476.Google Scholar
  24. 24.
    G. Greco, F. Iucolano, and F. Roccaforte, Appl. Surf. Sci. 383, 324 (2016).CrossRefGoogle Scholar
  25. 25.
    J.L. Weyher, L. Macht, F.D. Tichelaar, H.W. Zandbergen, P.R. Hageman, and P.K. Larsen, Mater. Sci. Eng., B 91–92, 280 (2002).CrossRefGoogle Scholar
  26. 26.
    N. Takeno, Atlas of Eh-PH Diagrams (National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments, 2005).Google Scholar
  27. 27.
    B.L. Pearce, S.J. Wilkins, T. Paskova, and A. Ivanisevic, J. Mater. Res. 30, 2859 (2015).CrossRefGoogle Scholar
  28. 28.
    J.L. Weyher, D.H. van Dorp, and J.J. Kelly, J. Cryst. Growth 430, 21 (2015).CrossRefGoogle Scholar
  29. 29.
    L. Dogliotti and E. Hayon, J. Phys. Chem. 71, 2511 (1967).CrossRefGoogle Scholar
  30. 30.
    I.M. Kolthoff and I.K. Miller, J. Am. Chem. Soc. 73, 3055 (1951).CrossRefGoogle Scholar
  31. 31.
    J. Price, J. Barnett, S. Raghavan, M. Keswani, and R. Govindarajan, Microelectron. Eng. 87, 1661 (2010).CrossRefGoogle Scholar
  32. 32.
    B. Swain, C. Mishra, L. Kang, K.-S. Park, C.G. Lee, and H.S. Hong, Environ. Res. 138, 401 (2015).CrossRefGoogle Scholar
  33. 33.
    H.-H. Huang, Metals 6, 23 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of California, DavisDavisUSA
  2. 2.Materials Engineering DivisionLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations