Advertisement

Piezoelectric and Dielectric Properties of ((K0.475Na0.495Li0.03)NbO3-0.003ZrO2)/PVDF Composites

  • Kun Yu
  • Shan HuEmail author
  • Wendi Yu
  • Junqin Tan
Article
  • 7 Downloads

Abstract

The (K0.475Na0.495Li0.03) NbO3-0.003ZrO2 (KNNL-Z) ceramic was synthesized by the conventional solid-state reaction and (KNNL-Z)/PVDF composites were fabricated by hot-pressing process using polyvinylidene fluoride (PVDF) and KNNL-Z ceramic. The effects of the ceramic content on the crystalline structures, morphology, densities, dielectric and piezoelectric properties of (KNNL-Z)/PVDF 0–3 composites were systemically studied. The KNNL-Z ceramic possesses a perovskite phase with orthorhombic symmetry and the PVDF polymer mainly possesses α, β and γ phases. Interestingly, the incorporation of the ceramic particles can decrease the crystallite size of the PVDF matrix. In addition, the β phase content increases and the a phase decreases when the ceramic particles are added. When the ceramic content increases from 40 wt.% to 80 wt.%, the relative fraction of β phase increases from 47.7% to 53.8%. Successful incorporation of ZrO2 into the KNN ceramic has been demonstrated by energy-dispersive x-ray spectroscopy and the most elements are homogeneously distributed in the composites. The dielectric and piezoelectric properties are found to be improved with the increase of KNNL-Z content. When 80 wt.% KNNL-Z is added, the dielectric permittivity reaches the value of 272 (100 Hz) at room temperature and the piezoelectric coefficient is 39 pC/N. After 30 days of aging, it is obvious that all the composites present a good stability of their piezoelectric property.

Keywords

KNNL-Z PVDF 0–3 composite piezoelectric properties dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Science and Technology development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    K. Singh, V. Lingwal, S.C. Bhatt, N.S. Panwar, and B.S. Semwal, Mater. Res. Bull. 36, 2365 (2001).CrossRefGoogle Scholar
  2. 2.
    H.H. Su, C.S. Hong, C.C. Tsai, S.Y. Chu, and C.S. Lin, Ceram. Int. 42, 17558 (2016).CrossRefGoogle Scholar
  3. 3.
    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, G.R. Li, and Q.R. Yin, J. Alloy. Compd. 484, 233 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Arbatti, X.B. Shan, and Z.Y. Cheng, Adv. Mater. 19, 1369 (2007).CrossRefGoogle Scholar
  5. 5.
    L. Wu, J.L. Zhang, C.L. Wang, and J.C. Li, J. Appl. Phys. 103, 45 (2008).Google Scholar
  6. 6.
    Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, and L.T. Li, J. Eur. Ceram. Soc. 37, 2057 (2017).CrossRefGoogle Scholar
  7. 7.
    G. Leveque, P. Marchet, F. Levassort, L.P. Tran-Huu-Hue, and J.R. Duclere, J. Eur. Ceram. Soc. 31, 577 (2011).CrossRefGoogle Scholar
  8. 8.
    X. Vendrell, J.E. Garcia, X. Bril, D.A. Ochoa, L. Mestres, and G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015).CrossRefGoogle Scholar
  9. 9.
    L.Q. Cheng, K. Wang, and J.F. Li, Mater. Lett. 138, 128 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Ramajo, J. Taub, and M.S. Castro, J. Mater. Sci. Mater. Electron. 25, 168 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Ameli, M. Nofar, C.B. Park, P. Potschke, and G. Rizvi, Carbon 71, 206 (2014).CrossRefGoogle Scholar
  12. 12.
    J.Q. Lin, G.R. Chen, W.L. Yang, H. Li, and Q.Q. Lei, J. Polym. Res. 23, 143 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Senthilkumar, K. Sridevi, J. Venkatesan, V. Annamalai, and M.S. Vijaya, Ferroelectrics 325, 121 (2005).CrossRefGoogle Scholar
  14. 14.
    Z.L. Cui, N.T. Hassankiadeh, Y.B. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).CrossRefGoogle Scholar
  15. 15.
    A. De Neef, C. Samuel, G. Stoclet, M. Rguiti, C. Courtois, P. Dubois, J. Soulestin, and J.M. Raquez, Soft Matter 14, 4591 (2018).CrossRefGoogle Scholar
  16. 16.
    N. Jahan, F. Mighri, D. Rodrigue, and A. Ajji, Appl. Clay Sci. 152, 93 (2018).CrossRefGoogle Scholar
  17. 17.
    S.K. Pradhan, A. Kumar, A.N. Sinha, P. Kour, R. Pandey, P. Kumar, and M. Kar, Ferroelectrics 516, 18 (2017).CrossRefGoogle Scholar
  18. 18.
    B. Ponraj, R. Bhimireddi, and K.B.R. Varma, J .Adv. Ceram. 5, 308 (2016).CrossRefGoogle Scholar
  19. 19.
    E. Venkatragavaraj, B. Satish, P.R. Vinod, and M.S. Vijaya, J. Phys. D Appl. Phys. 34, 487 (2001).CrossRefGoogle Scholar
  20. 20.
    D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, and M.S. Cao, Chin. Phys. Lett. 25, 4410 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Kato and K.I. Kakimoto, Mater. Lett. 156, 183 (2015).CrossRefGoogle Scholar
  22. 22.
    K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, and Y.J. Niu, J. Appl. Phys. 113, 321 (2013).CrossRefGoogle Scholar
  23. 23.
    A.K. Zak, W.C. Gan, W.H. Abd Majid, M. Darroudi, and T.S. Velayutham, Ceram. Int. 37, 1653 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Feizpour, H.B. Bafrooei, R. Hayati, and T. Ebadzadeh, Ceram. Int. 40, 871 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Pavlic, B. Malic, and T. Rojac, J. Eur. Ceram. Soc. 34, 285 (2014).CrossRefGoogle Scholar
  26. 26.
    T. Lusiola, A. Hussain, M.H. Kim, T. Graule, and F. Clemens, Actuators 45, 2344 (2015).Google Scholar
  27. 27.
    P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, and J.W. Perry, Adv. Mater. 19, 1001 (2007).CrossRefGoogle Scholar
  28. 28.
    S. Chen, K. Yao, F.E.H. Tay, and C.L. Liow, J. Appl. Phys. 102, 234 (2007).Google Scholar
  29. 29.
    L.Y. Xie, X.Y. Huang, Y.H. Huang, K. Yang, and P.K. Jiang, J. Phys. Chem. C 117, 22525 (2013).CrossRefGoogle Scholar
  30. 30.
    I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, and H.M. Shanshool, Opt. Quantum Electron. 48, 424 (2016).CrossRefGoogle Scholar
  31. 31.
    C.J. Dias and D.K. DasGupta, IEEE Trans. Dielectr. Electr. Insul. 3, 706 (1996).CrossRefGoogle Scholar
  32. 32.
    T. Greeshma, R. Balaji, and S. Jayakumar, Ferroelectr. Lett. 40, 41 (2013).CrossRefGoogle Scholar
  33. 33.
    L. Yu and P. Cebe, Abstr. Pap. Am. Chem. Soc. 238, 34 (2009).Google Scholar
  34. 34.
    V. Tiwari and G. Srivastava, Ceram. Int. 41, 8008 (2015).CrossRefGoogle Scholar
  35. 35.
    S. Satapathy, S. Pawar, P.K. Gupta, and K.B.R. Varma, Bull. Mater. Sci. 34, 727 (2011).CrossRefGoogle Scholar
  36. 36.
    R. Gregorio and N.C.P.D. Nociti, J. Phys. D Appl. Phys. 28, 432 (1995).CrossRefGoogle Scholar
  37. 37.
    J.H. Seol, J.S. Lee, H.N. Ji, Y.P. Ok, G.P. Kong, K.S. Kim, C.Y. Kim, and W.P. Tai, Ceram. Int. 38, 263 (2012).CrossRefGoogle Scholar
  38. 38.
    S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, and C.C. Wang, Mater. Lett. 211, 114 (2018).CrossRefGoogle Scholar
  39. 39.
    T. Kar, J. Mal, and R.N.P. Choudhary, J. Mater. Sci. Lett. 16, 328 (1997).CrossRefGoogle Scholar
  40. 40.
    Z.M. He, J. Ma, R.F. Zhang, and T. Li, J. Eur. Ceram. Soc. 23, 1943 (2003).CrossRefGoogle Scholar
  41. 41.
    A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, and M. Prasad, World J. Condens. Matter Phys. 2, 257 (2012).CrossRefGoogle Scholar
  42. 42.
    E. Atamanik and V. Thangadurai, J. Phys. Chem. C 113, 4648 (2009).CrossRefGoogle Scholar
  43. 43.
    Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, and Z.W. Guan, J. Alloy. Compd. 696, 746 (2017).CrossRefGoogle Scholar
  44. 44.
    N. Marimuthu, R. Parasuraman, M. Rathnakumari, P. Kumar, and R. Upadhyay, J. Mater. Sci. Mater. Electron. 29, 1280 (2018).CrossRefGoogle Scholar
  45. 45.
    Y. Zhou, J.C. Zhang, L. Li, Y.L. Su, J.R. Cheng, and S.X. Cao, J. Alloy. Compd. 484, 535 (2009).CrossRefGoogle Scholar
  46. 46.
    K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, and S. Sagadevan, J. Mater. Sci. Mater. Electron. 27, 6457 (2016).CrossRefGoogle Scholar
  47. 47.
    I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, and N.A. Hakeem, Phys. B 405, 94 (2010).CrossRefGoogle Scholar
  48. 48.
    A. Khokhar, P.K. Goyal, O.P. Thakur, and K. Sreenivas, Ceram. Int. 41, 4189 (2015).CrossRefGoogle Scholar
  49. 49.
    E. Roncari, C. Galassi, F. Craciun, C. Capiani, and A. Piancastelli, J. Eur. Ceram. Soc. 21, 409 (2001).CrossRefGoogle Scholar
  50. 50.
    Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei, Adv. Mater. 19, 852 (2007).CrossRefGoogle Scholar
  51. 51.
    W.H. Yang, S.H. Yu, R. Sun, and R.X. Du, Acta Mater. 59, 5593 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations