Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2788–2793 | Cite as

Formation, Charge Transfer, Structural and Morphological Characteristics of ZnO Fractal-Percolation Nanosystems

  • Vyacheslav Perekrestov
  • Vitalii Latyshev
  • Anna KornyushchenkoEmail author
  • Yulia Kosminska
Article
  • 31 Downloads

Abstract

Structural and morphological characteristics of ZnO nanosystems in the form of three-dimensional network-like systems have been investigated. Current–voltage (IV) characteristics and charge transfer parameters of ZnO fractal-percolation nanosystems have been studied both in air and in vacuum at different temperatures and voltage sweep rates. The charge transfer characteristics show the presence of RαCiCαi chains in the nanosystems. The RC chains are formed because the Debye screening length has the same order of magnitude as the local values of ZnO nanowires radii. Gas-sensing tests based on IV characteristics investigation have shown a possibility of distinguishing between reducing gases such as CH4 or C2H5OH.

Keywords

ZnO nanowires gas sensor current–voltage characteristics charge transfer reducing gas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ukranian Ministry of Science and Education within the research Grant “Mechanisms of universal sensors formation on the basis of anisotropic heterojunctions ZnO/Cu2O(CuO) in the form of neural networks nanosystems”; project number 0116U002620.

Supplementary material

11664_2019_6977_MOESM1_ESM.pdf (233 kb)
Supplementary material 1 (PDF 232 kb)

References

  1. 1.
    A. Dey, Mater. Sci. Eng. B 229, 206 (2018).CrossRefGoogle Scholar
  2. 2.
    P.T. Moseley, Meas. Sci. Technol. 28, 082001 (2017).CrossRefGoogle Scholar
  3. 3.
    J. Zhang, Z. Qin, D. Zeng, and C. Xie, Phys. Chem. Chem. Phys. 19, 6313 (2017).CrossRefGoogle Scholar
  4. 4.
    K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, J.S. Aanand, M. Jayachandran, and M. Maaza, IEEE Sens. J. 16, 2477 (2016).CrossRefGoogle Scholar
  5. 5.
    G. Kavitha, K.T. Arul, and P. Babu, J. Mater. Sci. Mater. Electron. 29, 6666 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Poloju, N. Jayababu, E. Manikandan, and M.V. Ramana Reddy, J. Mater. Chem C 5, 2662 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Manikandan, G. Kavitha, and J. Kennedy, Ceram. Int. 40, 16065 (2014).CrossRefGoogle Scholar
  8. 8.
    L.K. Krasteva, D.T. Dimitrov, K.I. Papazova, N.K. Nikolaev, T.V. Peshkova, V.A. Moshnikov, I.E. Gracheva, S.S. Karpova, and N.V. Kaneva, Semiconductors 47, 586 (2013).CrossRefGoogle Scholar
  9. 9.
    V.A. Moshnikov, I.E. Gracheva, V.V. Kuznezov, A.I. Maximov, S.S. Karpova, and A.A. Ponomareva, J. Non-Cryst. Sol. 356, 2020 (2010).CrossRefGoogle Scholar
  10. 10.
    I.E. Gracheva, V.A. Moshnikov, S.S. Karpova, E.V. Maraeva, and J. Physics, Conf. Ser. 291, 012017 (2011).CrossRefGoogle Scholar
  11. 11.
    N. Nasiri, R. Bo, F. Wang, L. Fu, and A. Tricoli, Adv. Mat. 27, 4336 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Jose and M.A. Khadar, Nanostruct. Mater. 11, 1091 (1999).CrossRefGoogle Scholar
  13. 13.
    H.Q. Ni, Y.F. Lu, Z.Y. Liu, H. Qiu, W.J. Wang, Z.M. Ren, S.K. Chow, and Y.X. Jie, Appl. Phys. Lett. 79, 812 (2001).CrossRefGoogle Scholar
  14. 14.
    Y. Kumar, A.K. Rana, P. Bhojane, M. Pusty, V. Bagwe, S. Sen, and P.M. Shirage, Mater. Res. Express 2, 105017 (2015).CrossRefGoogle Scholar
  15. 15.
    A.J. Mohammad, K.H. Hussain, and A.M. Mousa, Al-Mustansiriya J. Sci. 20, 79 (2009).Google Scholar
  16. 16.
    H.I. Abdulgafour, H.H. Darwoysh, and F.M. Hassan, J. Mater. Sci. Eng A 6, 51 (2016).Google Scholar
  17. 17.
    M. Egashira, Y. Shimizu, Y. Takao, and S. Saco, Sens. Actuators B 35, 62 (1996).CrossRefGoogle Scholar
  18. 18.
    S. Ebrahimiasl and A. Zakaria, Int. J. Electrochem. Sci. 11, 9902 (2016).CrossRefGoogle Scholar
  19. 19.
    V.M. Latyshev, T.O. Berestok, A.S. Opanasyuk, A.S. Kornyushchenko, and V.I. Perekrestov, Solid State Sci. 67, 109 (2017).CrossRefGoogle Scholar
  20. 20.
    A.S. Kornyushchenko, A.H. Jayatissa, V.V. Natalich, and V.I. Perekrestov, Thin Solid Films 604, 48 (2016).CrossRefGoogle Scholar
  21. 21.
    V.I. Perekrestov, A.I. Olemskoi, Y.O. Kosminska, and A.A. Mokrenko, Phys. Lett. A 373, 3386 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, and G. Lu, Sens. Actuators B 238, 473 (2017).CrossRefGoogle Scholar
  23. 23.
    R.S. Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, and Y. Hayakawa, Sens. Actuators B 255, 672 (2018).CrossRefGoogle Scholar
  24. 24.
    R.S. Ganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, and Y. Hayakawa, J. Alloys Compd. 698, 555 (2017).CrossRefGoogle Scholar
  25. 25.
    A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, and W. Gopel, Sens. Actuators B 70, 87 (2000).CrossRefGoogle Scholar
  26. 26.
    B.L. Zhu, C.S. Xie, D.W. Zeng, W.L. Song, and A.H. Wang, Mater. Chem. Phys. 89, 148 (2005).CrossRefGoogle Scholar
  27. 27.
    M. Aslam, V.A. Chaudhary, I.S. Mulla, S.R. Sainkar, A.B. Mandale, A.A. Belhekar, and K. Vijayamohanan, Sens. Actuators A 75, 162 (1999).CrossRefGoogle Scholar
  28. 28.
    A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe, Sens. Actuators B 108, 34 (2005).CrossRefGoogle Scholar
  29. 29.
    R. Muller, Multisensor Signal Processing.Sensors: A comprehensive survey, Vol. 1, ed. W. Göpel, J. Hesse, and J.N. Zemel (Berlin: Wiley-VCH, 1989), p. 314.Google Scholar
  30. 30.
    J.J. Chen, K. Wang, and W.L. Zhou, IEEE Trans. Nanotechnol. 10, 968 (2011).CrossRefGoogle Scholar
  31. 31.
    E.J. Wolfrum, R.M. Meglen, D. Peterson, and J. Sluiter, Sens. Actuators B 115, 322 (2006).CrossRefGoogle Scholar
  32. 32.
    P.-C. Chen, F.N. Ishikawa, H.-K. Chang, K. Ryu, and C. Zhou, Nanotechnology 20, 125503 (2009).CrossRefGoogle Scholar
  33. 33.
    A. Star, V. Joshi, S. Skarupo, D. Thomas, and J.-C.P. Gabriel, J. Phys. Chem. B 110, 21014 (2006).CrossRefGoogle Scholar
  34. 34.
    T. Kunt, T.J. McAvoy, R.E. Cavicchi, and S. Semancik, Proc. ADCHEM 1997, 91 (1997).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratory of Vacuum NanotechnologiesSumy State UniversitySumyUkraine

Personalised recommendations